GENERAL REPORT

ON THE

(1)preations of the Surbey of Fndia,

THE GREAT TRIGONOMETRICAL, THE TOlOGRAPHICAL, AND THE REVENUE SURVEYS UNDER TIE GOVERNMENT OF INDIA,

DURING

$$
4881-82
$$

PREPARED UNDER THE SUPERINTENDENCE
OF
LIEUTENANT-GENERILI J. T. W. LIKER, C.B., R.E., E.R.S., \&-c., 3ntivenor-gerent of Indit:

GENERAL REPORT

ON THE

(1)perations of the Surbey of Endia,

COMPRIAING

THE GREAT TRIGONOMETRICAL, THE TOPOGRAPHICAL, AND THE REVENUE SURVEYS UNDER THE GOVERNMENT OF INDIA,

PREPARED UNDER THE SUPERINTENDENCE
of
LIEUTENANT-GENERAL J. T. WALKER, C.B., R.E., F.R.S., \&c., Surbepor-Gencral of Endiat

Lalcuttx:

INTRODUCTORY.

PART I.
SUMMARY OF THE OPERATIONS OF THE TRIGONOMETRICAL, TOPOGRAPHICAL, AND REVENUE SURVEY PARTIES.

(Operations of the Sunbey of Endia

dURING THE SURVEY YEAR

1881-82.

INTRODUCTORY.

The general direction of the Survey Department, and the immediate supervision of the Trigonometrical and Topographical Branches, have been performed by Lieutenant-General J. T. Walker, C.B., R.E., Surveyor-General. The immediate supervision of the Revenue Branch has been performed by Lieutenant-Colonel J. Sconce, S.C., Deputy Surveyor-General.
2. The principal operations which have been carried out during the survey year under review, viz. from lst October 1881 to 30th September 1882, are as follows :-

Statement of Surcey Operations and Partics.

Number in this Report.	Nature nad Locnle of Operations.	Names of Exccutive Officers.	Debignations of Sorvey Partics.	IRenstig.
	Monsawar or Village Survey.			
X 7	Rewalpindi, Dera Ismail Khen, and Muzaffargarh, Punjab.	Lieutenant-Coloael D. Macdouald, S.C.	No. 1 Revenue Sur. vey.	4-inch senle. In Rawalpindi for reprodnc. tion to anme acule, and in all diatricts for re-
XVI	Konkan	$\left\{\begin{array}{c} \text { Mnjor H. Lees Smith, S.C. } \\ \cdots \text { J. Hill, R.E. } \end{array}\right.$	$\text { \|\} No } 10 \text { Revenue Sur- }$	duction to l-inch scale. 4-inch senle for reproduction to same scale and for reduction to
	Cadastral or Fiold Survey.			1 -inch ocale.
XVII	Mirenpar and portions of Tarai district, N.-W. P.	Colonel F. C Anderron, S.C.	$\begin{aligned} & \text { No. } 5 \text { Revenuo Sur: } \\ & \text { vey. } \end{aligned}$	16 -inch seule for reproduction to same scale
XVIII	Gazipar, Ballin, and Banares districts.			and for reduction to 1 . inch scale. In diatrict Shababad 4.
	Ganges River Surveg, dis. trict Shahnbnd.	YMajor W. Brrron, S.C.	No, 4 Reqeane Survey.	inch survey, not for publication.
XIX	Hanthawaddy district and Arnkan wasto land grants.	Major J. R. McCullagb, R.E.	$\left.\begin{array}{c} \text { No. } 2 \text { Revenue Sar. } \\ \text { vey. } \end{array}\right\}$	16 -inch sede for reproduction to sume scale, also for reduetion to 2 .
XX	Bassein district	" W. H. Wilkins, S.C.	$\text { No. } 8 \text { Revenve Sur- }\{$	isch and 1 -inch senles. In Arakan, akeleton
X XI	Tharawaddy district ...	Mr. H. B. Talbot	No. 7 Revenue Survoy.	boundary sirvey on 16 inch scale, not for publication.
X X11	Sylbet Test Surfey Miscellaneous.	No. 6 Revenue Survey.	16 -inch scale to teat settlement survey.
8XIII	Darjeeling Geograpえical.	Captain H. J. Harman, R.E.	Darjeeling Survey ...	Various acalea in Darjeeling, $\frac{1}{2}$-inch in Sikkim.
KXIV	Manipnr boundary.			
XXV	Northern Afghunistnn.			
XXVI	Dardistan and Kisbanganca.			
XXVII	Trans-Himalayan exploratione. 1. Badakshan. 2. Frontiers of Silkim. 3. Grent Tibet.			
	Tidal and Leveling Operations.			
XXVIII XXIX	Tidal operations. 'lidal diaturbances by			
XXIX XXX	eartbquake. Spirit-leveling operations.	$\left\{\begin{array}{l} \text { Mujor M. W. Rogere, R.E., } \\ \text { nad Major J. Hill, K.E. } \end{array}\right.$	Tidal and Leveling Party.	
	Geodetic.			
XXXI	Electro-telegruphic determination of longitudes.	Major G. Stralinn, R E., and Major W. J. Heaviside, IT.E	Nos. 1 and 2 Astronomical Parties.	

TRIANGULATION

3. The chain of pridcipal triangles, known as the Eastern Frontier Series, which in previous years had been carried from Assam through Arakan and British Burma into Tenasserim, has this year been brought to a close on a baseline of verification in Mergui, thus finishing the principal triangulation of all India on the lines originally marked out by Colonel Everest and sanctioned by the Hon'ble Court of Directors of the East India Company.
4. The completion of this great undertaking necessitates a brief review of the operations in the present report. It originated in a so-called " mathematical and geographical survey" which was commenced in Southern India in the year 1800 by Major Lambton, of Her Majesty's 33 rd Regiment of foot, on the recommendation of the Hon'ble Colonel Wellesley, afterwards the first Duke of Wellington. Its ohject was, in Major Lambton's words, to "determine the exact positions of all the great objects that appeared best calculated to become permanent geographical marks, to be hereafter guides for facilitating a general survey of the peninsula;" and as at that time the elements of the figure of the earth were not known with sufficient approximation

Pholoantoographed at the Office of the Trigonometrical Branch, Survey of India, Dehra Dín, September 1882.
to enablo the latitudes and longitudes of the "great objects" to be computed with accuracy from the data of the triangulation, Major Lambton pointed out that his intended survey would, in the interests "of general science * * involve many more objects than what immediately appertain to geography," and that portions of the triangulation would have to be executed with the utmost possible precision, and be supplemented by astronomical determinations of position, with a view to the requirements of geodesy.
5. The operations between the years 1800 and 1825 may be briefly described as constituting a network of triangulation over Southern India, which was grounded on, and verified by, several chain-measured base-lines, and through the middle of which a priucipal chain of triangles was carried in a meridional direction, from Cape Comorin up to Sironj in Central India. This chain formed the southern portion of what is now known as Lambton and Everest's Great Arc. Its angles were measured with greater care than those of the collateral network, and at certain of its stations astronomical observations were taken for the determination of the minor arcs of amplitude. Colonel Lambton died in 1823, and was succeeded by Colonel Everest, who two years afterwards proceeded to Europe, where he spent four years in supervising the construction of new instruments-great theodolites, astronomical circles, standard of length, and compensation bars for base-line measurements-for employment in extending and revising the Great Arc, the impertance of which for geodetic requirements had now become so thoroughly recognised by men of science in Europe, that Colonel Everest found no difficulty in obtaining carte blanche from the Government of India and the Court of Directors for all the instrumental equipment which he wanted. During his absence from India a small party of surveyors was employed in carrying a longitudinal chain of triangles eastwards from the point reached by the Great Are in Central India to Calcutta.
6. On his return from Europe, in 1830, Colonel Everest recommended the abandonment of the network system of triangulation, and the substitution instead of what he called the "gridiron" system, consisting of meridional chains of triangles tied together at their upper and lower extremities by longitudinal chains. The meridional chains were intended to be constructed at intervals of about one degree apart, while the longitudinal chains would follow the parallels of Calcutta, Bombay, and Madras, and thus run at intervals of from five to six degrees apart. The external chains of the gridiron would of course follow the British frontier lines and the coast lines. The entire triangulation was to be grounded on base-lines measured with the Colby apparatus of compensation bars and microscopes-in terms of a fixed standard of length-which were to supersede the old base-lines that had been measured with chains of comparatively rude construction and of uncertain length. This programme of operation was approved $b_{\bar{y}}$ the Government of India and the Court of Directors, and it has furnished the guiding lines on which the principal triangulation has been executed during the period of almost exactly half a century which has elapsed since it was laid down.
7. The central lines of the several chains of principal triangles are shown in the skeleton chart facing this page. For convenience of treatment in the final reduction, the whole of the chains situated within the limits of India proper have been grouped into five sections. Four of these are roughly four-sided in outline, and are respectively called the North-East, North-West, South-East, and South-West Quadrilaterals-namos in which the cardinal points have reference to the Kalianpur Observatory in Central India, which Colonel Everest adopted as the origin of the operations subsequent to 1832. The fifth is threesided, and is called the Southern Trigon. The North-East Quadrilateral was completed first of all; and here it will be seen that the meridional chains of triangles lie at intervals of about one degree apart, as originally designed by Colonel Everest. But in the sections subsequently executed the intervals between the meridional chains have been materially increased, as the mivor triangulations which in course of time came to be executed by the topographical surveys were of such accuracy that a smaller amount of principal triangulation was found to suffice for all geographical requirements, and more was not wanted for geodetical requircments. An additional meridional chain might bave been constructed on the meridian of 84° within the South-East

Quadrilateral, and it doubtless would have been constructed but that before it could be commenced a network of excellent topographical triangulation had been thrown over the entire area which is included between the collatoral principal chains, and nothing more was wanted. Similarly, in the Southern Trigon the execution of a chain of principal triangles along the west const, from Cape Comorin to Mangalore, was desirable for symmetry, co-ordinately with the chain on the east coast from Cape Comorin to Madras; but it was not wanted for geodesy. For geographical purposes, the Malabar Coast Series of secondary triangles was amply sufficient. It had been mostly executed by Major Lambton, and it stood connected with the modern operations. Major Lambton had not, however, attempted to throw his triangulation over the broad belt of plains on the east coast, which is covered with trees and other obstacles that he had no means of surmounting. Thus a chain of principal triangles has been carried in modern times over these plains, as it was wanted for geographical purposes. It has, moreover, furnished a base from which a branch chain of triangles has been carried across the Paumben Straits to the island of Ceylon, in order to connect the surveys of India and Ceylon.
8. For geodetic purposes, the amount of principal triangulation which has been executed is ample. The first measurement of the sections of the Great Arc between Cape Comorin and Sironj was accomplished with instruments far inferior in accuracy to those with which the liberality of the Court of Directors furnished Colonel Everest in subsequent years; and being deemed of insufficient accuracy for geodetic requirements, its revision was directed to be undertaken as suon as might be consistent with the need of triangulation for geographical purposes in other parts of India. The northern section, from Sironj down to Bider, was indeed revised under Colonel Everest's superintendence in 1838-39; but the revision of the southern sections-Bider, Bangalore, Cape Comorin-was postponed for several years, and was eventually accomplished during 1869-74. The Longitudinal Series from Sironj to Calcutta has also been revised, as it was originally executed with very inferior instrumental means; and it happens to be the most important of all the great chains of triangles, because it furnishes bases for no less than fourteen meridional chains lying to its north and south. Partial revisions have been made in other quarters of work executed with inferior instruments which it was deemed necessary to raise to a higher staudard of accuracy. Outside the limits of India proper the recently completed chain of principal triangles called the Lastern lrontier Series is a valuable contribution to geodesy as well as geography.
9. The whole of the triangulation rests on ten base-lines, which have been mensured with the Colby apparatus of compensation bars and microscopes, which was constructed in England under Colonel Everest's superinteridence. The relations of the length of the Indian Standard to the principal European Stundards of Length have been very exactly determined. Considerations of symmetry would suggest the introduction of an additional base line near Bombay, on the same parallel as the Bider and Vizagapatam base-lines, and measured with the same apparatus. But it so happened that a chain base-line had been measured on the Karleh plain, near Bombay, in the year 1828 by Captain Shortrede, the calculated value of which through the longitudinal series from tive Bider base-line agrees very closely with the measured value. It was commended by Colonel Everest, who however some years afterwards, in 1848, made preliminary arrangements for the measurement of another line in the neighburhood with the Colby apparatus; but he did not carry out this project. Eventually the idea was abandoned, as tho distance from the Bider base is comparatively small, and no material advantage, at all commensurate with the labour and expense, would be derived from the measurement of a new base; for to measure a base-line with the Colby apparatus occupies two full-strength trigonometrical parties for an entire field seasm, unless therc happens to be other employment for the survey officers in the neighbourhood of the base. There is some uncertainty as regards the unit of length adopted by Captain Shortrede in measuring the Karleh base; consequently this base has not been employed in the limal reductions, though no new base has been measured.
10. Thus the great work of the principal triangulation of India is now an accomplished fact. Commenced in 1800 under the auspices of the Madras Governm'nt, it was carried on by Major Lambton, almost single-handed, until
the year 1818, when the Marquis of Hastings, who was then Governor General, placed it under the direct and immediate control of the Supreme Government. Captain Everest was shortly afterwards appointed assistant to Major Lambtnn. In 1832 additional officers were appointed, and by the year 1840, when the geodetic operations on the northern sections of the Great Arc were completed, the personnel sufficed for the equipment of six trigonometrical survey parties; and this number of parties was uniformly maintained from that time onwards, until it could be gradually diminished on the completion of the successive chains of triangles. The operations have been uniformly and cousistently supported by the Supreme Government, with the sanction and approval, first of the Hon'ble Court of Directors of the East India Company, and afterwards of the Secretary of State for India. In times of war and financial embarrassment the scope of the operations has been curtailed, the establishments have been reduced, and some of the military officers sent to join the armies in the field; occasionally the civilians also have been sent to the seat of war, to be employed on survey duties. But whatever the crisis, the operations have never been wholly suspended. Even during the troubles of 1857-58 they were carriod on in some districts though arrested in others. They have been uninfluenced by changes of personnel in the administration of the British Indian empire; each succeeding Governor-General or Viceroy has honoured them with lis support. At the close of the mutinies Lord Canning wrote of the principal triangulation and collateral topography in Kashmir to Colonel Waugh, then Surveyor-General of India, as follows:-
"I cannot resist telling you at once with how much satisfaction I have seen these papers. It is a pleasure to turn from the troubles and anxieties with which India is still beset, and to find that a gigantic work, of permanent peaceful usefulness, and one which will assuredly take the highest rank as a work of scientific labour and skill, has been stendily and rapidly progressing, through all the turmoil of the last two years,"
And up to the last moment the successive Governments have accorded their support to the operations with equal liberality and constancy. It may well be doubted whether any similar undertaking, executed in any other part of the world, has been equally favoured and supported.
11. The field operations-viz. the measurements of the base-lines and angles of the principal triangulation-being completed, the next step is the final reduction and harmonizing of the results, giving to each measurement and observation its proper weight, and nothing more or less. Strictly speaking, this undertaking should be pestponed until the completion of the whole of the operations, and then all the observations should be reduced simultaneously, because every fact of observation is more or less dependent on, and connected with, every other fact. But the simultaneous reduction of the vast number of such facts acquired over all India, by many individuals and during a period of many years, was obviously impossible. Thus it became necessary to divide the triangulation of India proper into the five sections which have already been mentioned in paragraph 7 and are indicated in the accompanying skeleton chart; and even then the simultaneous reduction of the numerous facts of observation collected together in tach group was a work of enormous labour, necessitating-as remarked by Colonel Clarke, C.B., of the Ordnance Survey, one of the most eminent of living geodesists, in his recent treatise on geodesy-" the most elaborate calculations that have ever been undertaken for the reduction of triangulation." The division of the work into sections necessitated the maintenance of the results determined for the sections first reduced, in the contiguous sections, when they in turn came to be reduced; and this necessitated commencement with tho section which in all its parts was of the highest accuracy. The section of which the field work was first completed was the North-East Quadrilateral ; but as many of its angles had been measured with instruments of inferior accuracy to those employed in the sections which were subsequently completed, the reductions were performed in the following order :-1 st, the North-West Quadrilateral; 2ndly, the South-East Quadrilateral; and 3rdly, the North-East Quadrilateral. The reductions were commenced in the year 1869: the final results of the first

[^0]VI, published in 1880 ; and those of the third, in Volumes VII and VIII, which are now in the hands of the book-binders and will shortly be published. The fourth section selected for treatment was the Southern Trigon; its simultaneous reduction is now completed, but the final results will probably not be printed and ready for publication for another year or two. The last section to be taken in hand is the South-West Quadrilateral; but the final reduction of this section has not yet been commenced, nor has that of the recently completed Eastern Frontier Series.
12. The stations of the principal triangulation are 3,472 in number. They have been constructed with a view to being as lasting and permanent as possible. On the plains they are fashioned in the form of towers rising from 20 to 40 , and even 60, feet above the ground level, and usually about 16 feet square at base, with an isolated central pillar for the instruments to rest on. On hills and mounds or other eminences the central pillar-always of masonry -is raised 2 to 4 feet above the ground level, and is surrounded with a platform of earth and stones. Mark-stones, engraved with a dot and surrounding circle to define with precision the point to which the observations are referred, are inserted on the surface and at the base of each pillar. The stations are invariably placed under the protection of the local officials : they are scattered over 338 British districts and Native states, in each of which some officer is required to submit annual reports of the condition of the whole of the stations within its circle; repairs are effected whenever necessary. If the present system of protection and repairs is maintained by future generations of officials, the duration of the stations should be co-eval with that of the hills and plains on which they stand, and the great work now completed will be of lasting utility.
13. A considerable amount of secondary triangulation has been executed pari passu with the principal triangulation, partly by observations from the principal stations to all the most prominent objects visible from them-as the snow peaks of the Himalayan ranges-partly by the construction of chains of secondary triangles resting on the primary chains, such as have been carried to a number of important towns and cities within the limits of the empire, and of late years beyond those limits to Kandahar and Kelat on the one side, and to Bangkok on the other. Much sccondary triangulation, however, still remains to be executed. It is wanted on the coast lines, to furnish fixed points for the marine surveys, and in lucalities in the interior at a distance from the nearest principal chains, where data may be required for topographical surveys. But it is chiefly wanted outside the limits of India proper, as for the extension of the Eastern Frontier Series through the Malayan peninsula down to Singapore, and to furnish a basis for the geography of Upper Burma. For the latter purpose threo chains on the meridians of $94^{\circ}, 96^{\circ}$, and 98° respectively are desirable, the two first of which would close on the chain of secondary triangulation already completed in the Assam Valley, while the third might be carried still further to the north. Bangkok, the capital of Siam, having already been connected with the Indian triangulation by a chain of triangles, which was recently executed with the support of the Siamose Government, it is to be hoped that the ruler of Upper Burma may soon be moved to follow the good example set by his neighbour potentate, not only in assenting to the triangulation, but in rendering all desirable assistance towards its execution. The proposed chains of triangles for Burma and the Malayan peninsula are shown in the accompanying skeleton chart. The latter has already been sanctioned by the Government of India and the King of Siam, and it would have been commenced ere this had officers and funds been available for the purpose.
14. The requirements of geodesy necessitate astronomical observations for the determination of the latitude and the azimuth, and electro-telegraphic observations for the determination of differential longitudes, at several of the stations of the principal triangulation. These have already been conpleted to a considerable extent. Further operations of this nature are in progress at the present time; they aro carried out by the two small astronomical parties which are attached to the trigonometrical or geodetic branch of the department, and by which all the operations that are required to render the principal triangulation fully subservient to geodetic science should be completed in the course of a
few years. An extensive series of pendulum observations for investigations of variations of gravity and the figure of the earth, taken chiefly at stations of the principal triangulation, has been completed and connected with the groups of corresponding observations in other parts of the globe. Long lines of spiritlevels have been, and are still being, carried on in connection with the principal triangulation, from the sca to the base-lines in the interior, and from sea to sea across the peninsula; they rest on determinations of the mean-sea level which have been, and are being, made at the tidal stations on the coasts.
15. The Index Chart to the Great Trigonometrical Survey of India which faces this page shows the whole of the principal triangulation, distinguishing between the early operations with inferior instruments and the operations since 1830 with superior instruments; the former being indicated by fine lines, the latter by thick lines. It also shows the more important secondary triangulations which have been executed outside the limits of the principal triangulation-as to the Himalayan snow peaks, to Kandahar, and to Bangkok; but it dues not give any of the large amount of internal secondary triangulation, as it could not have done so without crowding the chart greatly and causing confusion with the early principal triangulation. For this reason the modern chain of secondary triangles which connects the old principal chains on the west coast of the southern peninsula, between Cape Comorin and Ponany, and between Cananore and Mangalore, is not shown. The Index Chart also indicates the positions of the base-lines which were measured with the Colby apparatus, the stations at which astronomical observations for either latitude or azimuth, or both, have been made, the longitudinal ares, the stations at which pendulum observations for investigations of variations of gravity have been taken, the main lines of the spirit-leveling and the tidal stations. The chart was ariginaliy engraved in 1870, but it has now been brought up to the 1 st October 1882 , in order to be conplete up to date.

TOPOGRAPHY.

- 16. The regular topographical operations have been carried on in continuation of those of last sear, mostly in the same provinces and by the same parties. But the completion of the Jaunpur cadastral survey last year happily set free a party for employment in making a survey of the banks of the river Hoorhly, for some distance above and below Calcutta. This has now been commenced, and is being carried on pari passu with a survey of the bed of the river, now in progress under the orders of the Port Commissioners. Many years have elapsed since the last survey of this important portion of the river Hooghly was made; the maps are out of date and otherwise inadequate to the requirements of the present time, for their scale- 4 inches to the mile-is much too small to show the valuable properties situated along the banks of the river. In fact, it may bo said that up to the present time this densely-populated riverain tract, which is studded with valuable estates and factories-the property of a wealthy mercantile community of Europeans and Natives-and is of vastly greater importance than any equal stretch of river in all India, has fared little or no better in the way of maps than the poorest and least significant village lands away from the river. Thus a large scale survey of the tract had become a necessity; and the fortunate circumstance that a new survey of the bed of the river was also about to be made has enabled two important collateral surveys to be carried on simultancously, to the mutual advantage of both.

17. A constantly growing demand has arisen of late years for new surveys, on a large scale, of districts under the administration of the British Government, in supersession of the small scale surveys which were executed a generation or more ago. The first surveys were undertaken mainly with the object of furnishing sufficiently accurate materials for the series of maps known as the sheets of the Atlas of India: and as these maps were, and still are, produced on the scale of $\frac{1}{4}$ of an inch to the mile, a close survey of local details was not required for them. The operations were always regarded as sketchy and preliminary to exact survey. The survey establishments were not sufficiently large to undertake much survey work on an adequato scale for general administrative purposes, in one province, without putting a stop to tho preliminary survey work in all other provinces. Thus the so-called
topographical survegs of those days were in renlity geographical reconnaissances, sufficient for all the requirements of the Indian Atlas and for general reproduction on sinall scales, but not for purposes which demand accurate delineation of minute detail. Necessarily, therefore, calls are now being-made from various quarters for new maps and new surveys; and not unfrequently complaints are nade of the old surveys, that they are inaccurate and inadequate for present requirements. As a matter of fact, however, they are as good as they were intended to be, or could have been made without being far more costly. Their cost rates per square mile do not generally exceed a tenth of the average cost rates of surveys showing the topographical details with all the fulness and accuracy that are now required for local allministrative purposes. They have had their day, and have been of much utility hitherto; but the time has arrived when they must be superseded by more elaborate survey operations.
18. The general out-turn of topography executed during the year in the course of the operations described in sections II to XIII, XIX, XXI, and XXIII of this report, excluding Forest Survey, has been as follows:-

6,431	square miles surveyed on the	d-inch	scale.	
9,081	$"$	$"$	1	$"$
8,627	$"$	$"$	2	$"$
14	$"$	$"$	6	$"$
33	$"$	$"$	16	$"$

Four towns and one cantonment, embracing an area of 46 square miles, have been surveyed, on scales varying from 6 to 80 inches to the mile.

MOUZAWAR, RIVERAIN, AND FOREST SURVEYS.

19. The Mouzawar or Village Survey on the 4 -inch scale of the Dera Ismail Khan district has been completed, and a similar survey has been extended into the Thal portion of the adjoining district of Muzaffargarh, where there had only been a Tupographical Survey when the other parts of the district were surveyed village by village in 1856-57.
20. The Riverain Survey, on the 4 -inch scale, on the Jumna river, which has been carried on for some years in connection with topographical operations in the Meerut Division, has been continued, and a similar Riverain Survey has been commenced on the Ganges river in connection with the same operations. A new Riverain Survey has been commenced by the Cadastral Survey Party employed in districts Ghazipur and Ballia of the North-West Provinces, which party has extended its operations across the Ganges to survey, on the 4 -inch scale, the village lands of district Shahabad of Bengal, lying opposite to district Ghazipur.
21. The Punjab Revenue Survey Party has continued, for forest purposes, the 4 -inch survey of the Kala Chitta Range in the Rawalpindi District, which work has been completed. The survey party in the Konkan, which has hitherto been employed in surveying on the 2 -inch scale solely for topographical purposes, has been engaged in surveying the Thana District on the increased seale of 4 inches to a mile, to meet the requirements of the Forest Department. The area usually accomplished by the party has consequently been diminished, there being a difference in out-turn between the past and present seasons of 670 square miles. In British Burma a small area of very difficult country, forming part of one of the forest reserves in the Tharawaddy District, has been surveyed on the 4 -inch scale.
22. The survey of the Dang Forests of the Klandesh District on the 4 -inch scale, undertaken for the Forest Department, has been continued by the Guzerat Topographical Survey Party. The areas of all these operations are-

Mouzavar	\ldots	\ldots	1,687	qua	iles.
Riverain	199		
Forest	1,311	"	

Cadastral surveys.

23. In the North-West Provinces the Cadastral Survey of district Ghazipur has been completed, and cadastral operations have been continued in districts Ballia and Mirzapur, also in certain villages of the Tarai

Disict. An experimental measure has been introduced at the request of the Brard of Revenue, North. West Provinces, in connection with the Cadastral survey of Mirzapur, of having the klusras (giving particulars of the occupancy and ownership of village lands) written by the surveyors at the time of the survey of the fields. The experiment, which is expected to bring about a large reduction in the usual expense of the preparation of the "Record of Rights," cannot be considered to be complete until the duties of the Settlement Officer in connection with the Record of Rights have been carried out during next season.
24. In British Burma, districts Hanthawaddy, Bassein, and Tharawaddy have continued to occupy the three cadastral parties at work in the province, and the Hanthawaddy party has also carried on the survey of the Rangoon Town District.

The Hanthawaddy party has again sent a detachment to Arakan to continue the skeleton survey of boundaries of waste land grants.

In Assam a suall party, speciaily organized, has been engaged on the Cadastral Survey of selected villages in three parts of district Sylhet, as a test on the accuracy of the mahalwar maps of the district, which were constructed by a civil establishment in 1862. The areas surveyed cadastrally are-

North-Wost Provinces	\ldots	\ldots	\ldots	1,385 equare milos.	
British Burma	\ldots	\ldots	\ldots	3,513	..
Assam (Sylhet)	\ldots	\ldots	\ldots	26	$"$

25. In British Burma the officers of the Cadastral Survey Parties have continued to hold in view the wishes of the local administration regarding the training of Burmans as field surveyors; but the reports concerning the value of the work of these men are not so favourable as last year. Though doing work gencrally good in quality, the Burmans are said to be very inferior to the Hindustani surveyors in rapidity of execution, most of them working only in a half-hearted way, and serving with the survey parties solely with the object of qualifying for better civil appointments. The dislike of the Burmans to remain long with the survey parties arises partly from the circumstance that the employment offered to them as field surveyors extends only over six months, without, as a rule, any leave allowances being granted to them during the other balf of the year. There is also the disadvantage in the employment that service as a "field surveyor" is only temporary service, non-qualifying for pension.
26. The field surveyors of the Indian Cadastral Surveys labour under the same disadvantage of having their service regarded as only "temporary," having in this respect succeeded to the status of the settlement "amins," whose duties they bave assumed, and being quite distinct, as regards the conditions of service, from the sub-surveyors (trained as topographers and theodolite survejors) of the permanent establishments, whose service qualifies for pension. The present "field surveyors" are much more highly trained than the old "amins," and many of ther have served continuously, and in several districts, since the commencement of cadastral operations in the North-West Provinces. The men are deserving of having their status improved; and in the interests of Government it is desirable that they should be permanently attached to Cadastral Survey Parties, and their service made "permanent," if cadastral operations are in future, as now, to form a considerable part of the regular duties of the Survey Department.
27. Towards the close of the year an important Resolution-No. 45S, dated 4th September 1882-was issued by the Government of India in the Revenue and Agricultural Department, drawing the attention of the Local

> North.Western Provinces.
> Mritish Burma.
> Beneal.
> l'unjab
> Central Provinces.
> Aseam. Governments marginally specified to the unequal cost of revenue surveys undertaken in different provinces or districts, as well as to the inconvenience and expenditure caused by the absence of a definite understanding between the survey and the revenue officers as to the extent and character of the work which one department requires from the other. A question was raised as to the comparative cost of cadastral surveys executed by the Survey Department and those exccuted by the Revenue Settlement Departorent. It was stated that
whereas the accuracy of the professional maps never fell below a certain ${ }_{\text {xed }}$ standard, on the contrary under non-professional management the work turi?d out was very unequal, and many of the maps had proved comparatively usc less. Enquiries have led the Government to suppose that the cost of the latter is not at the present time much below that of the former, more particularly in the North-West Provinces, where a considerable decrease in the rate of expenditure has been effected by modifications of procedure, the officers of both the Survey and Settlement Departments laving co-operated in reducing the system of cadastral survey to a more efficient and economical standard than that which had formerly prevailed. A further question was raised as to the extent to which the work of the survey parties employed upon topographical surveys cau be utilized for cadastral purposes, or whether, on the other hand, maps which have been supplied by non-professional cadastral parties can be utilized for topographical purposes. The system which should be adopted in future cadastral surveys is considered; it is remarked that there is a general consensus of opinion that a skeleton survey, conducted under professional agency, should precedo all field plotting, by whatever agency performed; the skeleton is expected to contain all the tri-junction pillars in the boundaries of villages, and a series of intermediate pillars at distances of somewhat less than half a mile apart; the field plotting, when not filled in professionally, to be undertaken by the village patwaris or accountants. Local Governments are at liberty to employ other than professional agency when they please, provided the agency employed is thoroughly trained for the purpose. Suggestions are made regarding the training of patuaris, the formation of survey schools, and the system of mensuration to be taught. The inconvenience of irregular demands on the Survey Department, which involve sometimes the formation of untrained survey parties, at other times the breaking up of well-trained parties, is prominently noticed; and Local Governments are requested to cause forecasts to be made of the areas which will have to be surveyed during the next ten years, and so to arrange their programmes that work may be found without interruption during that term for the entire staff which is placed in cbarge of the initial operations. As regards locally organized surveys, the cost must be kept within certain limits, a system of survey must be adopted which will ensure the quality being kept up to a certain standard, and the cost and quality must be tested by recognized experts.

GEOGRAPHICAL RECONNAISSANCE.

28. The geographical surveys and reconnaissances described in sections VIII, XIV, XXIII, XXIV, XXVI, and XXVII have resulted in an addition to the country already mapped as follows:-

tRaNs.fimalayan geographical explorations.

29. The celebrated explorer Pundit Nain Singh, C.I.E., who was originally trained by the late Col. T. G. Montgomerie, R.E., for Trans-Himalayan survey operations, and whose services are well known not only to the Government of India, but to all who take an interest in the geography of Central Asia, died on the 24th January 1882. He had received honorary distinctions from the Royal and other Geographical Societies in Europe, had been made a Companion of the Indian Empire and been given a grant of land in perpetuity for himself and his heirs by the Government of India in acknowledgerent of his services. And these services were not restricted to the several years when he was actually making explorations; but after be retired from active duties he was occosionally employed in training other natives of India for similar explorations, and in imparting to them something of the knowledge and skill which he had himself acquired in the course of his long and varied experiences. Very
intelligent and most trustworthy, his name will always hold an honourable place in the annals of the Indian Survey Department.
30. The present report contains a map and brief accounts of route surveys in the regions to the west and north of the frontiers of Sikkim, which were made in 1879 by an employe of the Educational Department of Bengal, and during $1880-81$ by an employe of this department, which have recently been worked out and mapped by Captain Harman.

Also a map and a short account of route surveys in and beyond Badakshán, in Roshán, Shignán, and other districts bordering the Panjah river and the collateral affluents of the river Oxus, which were made during the years 1878 to 1881 by M-S-, an employe of this department, and which contribute much matter towards the filling in of the numerous lacunæ in the existing maps of this region.

Also a preliminary account of explorations over an extensive area in Great Tibet, to the north and east of the regions reached by Pundit Nain Singh, which were made by his pupil and once companion, $A-k$, who has returned to India, after an absence of four years, so recently that as yet there has not been time to reduce his observations, translate his journals, and construct a map in illustration.
31. At the International Geographical Congress and Exbibition which was held at Venice in the autumn of 1881, two wedals were placed at the disposal of the Surveyor.General for award to the two native explorers whom he considered most meritorious. One of these has been presented to M-S-; the other is reserved for presentation to $\mathrm{A}-\mathrm{k}$, in the expectation that when lis route surveys are worked out he will be found to be fully deserving of the honour.

THE OPERATIONS OF THE SEVERAL SURVEY PARTIES APPERTAINING TO THE THREE BRANCHES OF THE SURVEY DEPARTMENT.

TRIANGULATION AND COLLATERAL OPERATIONS.

I.-THE EASTERN FRONTIER SERIES.

32. The programme of operations for the field season embraced the following projects:-
(A) The connection of the principal triangulation with the base-line of verification in Mergui, which had been selected and marked out during the previous field season, as intimated in the report for last year.
(B) The extension of the principal triangulation down the coast line and the islands of the Mergui Archipelago, as far as might be practicable during the time available.
(C) The prepuration and measurement of the base-line in Mergui, and its connection with the mean-sea level.
(D) Astronomical determinations of latitude and azimuth at the stations of the principal triangulation in the neighbourhood of the base-line.
33. The experience gained in previous years had shown that suitable atmospheric conditions for the observation of distant objects were only to be expected during the first half of the field season. By the middle of the month of January dense haze usually sets in, which shuts all distant oljects out of view, and this of course necessitates the suspension of the measurement of the angles of triangles of which the sides usually range from 10 to 40 miles in length. It was therefore determined to devote the first half of the field season to the principal triangulation, and the remainder to the measurement of the base-line, the astronomical observations being taken whenever convenient. With a view to expedite the progress of the triangulation and make the most of the limited period of favourable atmosphere, the Government steaner Celcrity was placed for a few months at the disposal of this department, in order that the survey officers might no longer be dependent-as they had been in previous years-on the sailing vessels ordinarily used by the native sea-faring population in their coasting voyages, and the employment of which had been a constant source of delay and inconvenience. The steam-launch Moulmein was also lent for a short time by the Chief Commissioner in British Burma, and was found most serviceable.
34. Two triangulation parties were available for the operations, viz. the Eastern Frontier Party, recently under Captain Hill, but now under Major Rogers; and the party under Colonel Branfill, which in the previous year had been employed in completing the Eastern Sind Series. During the first half of the season these parties worked independently of each other,Colonel Branfills in connecting the principal triangulation with the base-line and executing the necessary preliminaries for the linear measurement; Major Rogers', in extending the principal triangulation southwards. They then assembled at the base and measured it with the Colby apparatus of compensation burs and microscopes-used in conjunction with the standard of length of this survey-which has been employed since the jear 1830 in measuring all base-lines for the principal triangulation, and is mentioned in paragraph 6 of this report. Colonel Branfill supervised and took a share in both the measurement of the basc-line and the collateral triangulation and astronomical observations.

35. The principal triangulations were completed by the middle of January; the work exceuted by both parties fixes 15 new stations, and gives as many new triangles; it extends over a direct distance of 100 miles between the parallels of 10° and 12°, and includes an area of 1,688 square miles. Eight new stations were fixed in connecting with the base-line, and seven on the extension. But whereas the former are comprised within a distance of 15 and an area of 21 square miles, the latter extend over a distance of $9 t$ miles and embrace an area of 1,667 square miles. Major Rogers made a reconnaissance of the islands of the Mergui Archipelago with a view to the future secondary triangulation to Singapore, down to the parallel of $9^{\circ} 20^{\prime}$, a distance of about 60 miles beyond the southernmost side of the principal triangulation. Fortyeight prominent points on the Malayan Peninsula and the islands of the Archipelago were fixed by both parties, by observations taken at the principal stations; they lie in an area of 3,344 square miles exterior to that of the principal triangulation. Thus the entire area operated in was about 5,000 square miles.
36. Great advantage was derived from the employment of steamers instead of sailing vessels, in enabling the survey officers and the parties of signallers to be moved about with rapidity; for the observing season proved to be a very short one-barely two months-between the cessation of the rains in November and the setting in of the haze in January. The steam-launch Moulmein proved to be an invaluable auxiliary to the steamer Celerity, in affording access to points on the coasts and islands which the larger vessel could not have reached because of the shallowness of the water. By means of heliographic signals on the Morse system-between himself, the officers of the steamer, and his assistants-Major Rogers directed the general movements, and was thus able to make the most of the stcam power at his disposal. Captain Hotham, of the Indian Marine Department, commanded the Celerity, with the crew of which the steam-launch was also worked. His services, and those of his subordinate officers, are warmly acknowlodged by Major Rogers; for they all took a keen interest in the operations, and Captain Hotham has expressed a wish to be again employed in co-operation with our officers whenever the triangulation is extended to the south.
37. By the end of January all hands were engaged on the measurement of the Mergui base-line under Colonel Branfill. This base is about $3 \cdot 4$ miles in length, or somewhat less than half the average length of all the base-lines previously measured in India with the Colby apparatus, with the exception of the Cape Comorin base, which is only 1.7 miles in length; but the Cape Comorin base was measured four times, with a view to the investigation of the probable error of base-lines measured with the Colby apparatus, whercas the longer bases were only measured once. The shorter a baso the greater the number of triangles that are required to connect it with the principal triangulation, and vice vers \hat{a}. In the operations of this Survey the length has generally been regulated with a view to employing the measuring parties during the whole of the field scason, in order to avoid the loss of time which would be entailed by transferring them to other operations in other, and probably distant, localities during the most favourable season of the year for field work. But suitably level ground for the measurement of a longer base could not be found anywhere on the coasts or the islands of the Mergui Archipelago, whereas there was ample employment for the survey parties in the neighbourhood, in addition to the measurement of the base. Thus a base of short length was not only obligatory, but the most convenient in the present instance.
38. The actual measurement of the base and the comparisons of the compensation bars with the standard of length occupied only 24 days. This, of course, is exclusive of the time spent in varicus preparations on the spot, which were all more or less tedious. The apparatus had been put into thorough working order, under the supervision of Mr. Hemnessey, before it was despatched from the head quarters of the Trigonometrical Survey in Dchra Dún, and it reached Mergui in good order, having met with no wishap on its long journeys by land and sea; thus the measurement of the base was performed with rapidity, and without let or hindrance of any kind. At several, but not all, previous baso-lines it has been customary to divide the line into sections connected by triangulation, in order to test the
operations by comparing the ratios of the measured lengths of the sections with the values of ratio afforded by the triangulation, and also to guard against accidental gross error in the record of the number of sets measured from day to day; but the measured length was found to agree so closely with the value brought down through the principal triangulation, that it was certain that no material errors could have been made; and the evidence afforded by the tests applied on previous occasions-and more particularly by the four-times measured base at Cape Comorin-have sufficed to establish the great accuracy and precision of the apparatus, and to show that further triangulation tests are unnecessary. Consequently, though in the present instance the base-line was divided into two sections, with a view to enabling comparisons of the measuring bars with the staudards of length to be made at the centre as well as at the two extremities, the sections were not connected by triangulation, as no advantage, commensurate with the labour of measuring three additional principal triangles, would have been gained; the time this would have occupied was more profitably spent in astronomical observations for latitude and azimuth. With a view to determining the height of the base-line above the sea, a line of spirit levels was carried between one end of the base and a point on the coast, at which a tidal station will hereafter be established.
39. The value of the length of the base-line, as determined by calculation through the triangulation from the side of origin of the Eastern Frontier Series, is in excess of the measured value by about 3.4 inches, or 1 inch per mile; the triangulation consists of a chair of polygonal figures-mostly hexagons and quadrilaterals-of which the length is nearly 1,000 miles, while the number of triangles on the shortest line between the side of origin and the base-line is 108. Thus the closing error on the base is, for so long a chain, a small one; it is less than the theoretical probable error of the triangulation calculated on the assumption that the probable errors of the angles do not exceed $0 \cdot 5^{\prime \prime}$: it indicates that the error generated in the measurement of the angles of the principal triangles may be safely considered to have been very minute.
40. Astronomical observations for the determination of the Iatitude and the azimuth were taken at four of the stations of the principal triangulation in the vicinity of the Mergui base-line. It is well known that all such determinations are liable to be influenced by local deflections of the plumb-line; consequently it is always preferable to obtain fairly accurate results at several points than seemingly very accurate results at a single point, for the magnitude of the latent error due to the local deflections frequently exceeds the probable errors arising from all other causes put together. In the present instance all the astronomical stations lic within an area of about 20 square miles; ard the differences between the observed and the geodetically computed latitude and azimuth at each station show that there can be no material variations of local attraction within this area. The mean geodetic latitude has been found to be $8 \cdot 2^{\prime \prime}$ in defect of the mean astronomical latitude, while the mean geodetic azimuth is $11 \cdot 2^{\prime \prime}$ in excess of the mean astronomical azimuth. The geodetic calculations have been brought up from Kalianpur-Colonel Everest's station of astronomical origin, referred to in paragraph 7-through the triangulation of the two Longitudinal Series west and east of Calcutta, and through that of the Eastern Frontier Series; and they are based on Colonel Everest's elements of the figure of the earth, which have invariably been used in all the calculntions of this Survey up to the present time. Later and more accurate elements were calculated by Colonel Clarke, C.B., of the Ordnance Survey, in 1860; if they were employed, the difference in latitude would be reduced to about $6^{\prime \prime}$, and that in azimuth to $8^{\prime \prime}$. These quantities may therefore he taken to represent the magnitudes of the discrepancies arising from the combined action of the errors of the triangulation connecting the astronomical origin at Kalianpur with the astronomical terminus at Mergui, and the errors due to the local attractions at the two localities; the beoretical probable errors of the triangulation are less than $\pm 1^{\prime \prime}$ in latitude and $\pm 3^{\prime \prime}$ in azimuth; thus, the discrepancies are probably mainly due to the influence of local attractions in deflecting the plumb-line at the initial and terminal astronomical stations.

41. Latitude determinations were also made at Moulmein by Major Rogers and his assistants at the end of the field season. The observations were taken at three stations, situated within an area of seven square miles. Here, in latitude $16^{\circ} 29^{\prime}$, the mean geodetic value was found to be $65^{\prime \prime} 5^{\prime \prime}$ in defect of the mean astronomical value, as compared with $8 \cdot 2^{\prime \prime}$ at Mergui, in latitude $12^{\circ} 23^{\prime}$. 'The zenith distances of the stars under observation were measured on the 18 -inch vertical circle of an old two-foot theodolite, of inferior accuracy to the one employed by Colonel Branfill; but the difference between the results is probably mainly due to differences in the local attractions at Moulmein and Mergui.*
42. At the end of the field season Major Rogers made irspections of the working of the tide-gauges at Moulmein, Amherst, Rangoon, Elephant Point, and Port Blair, and then proceeded to Poona to relieve Major Hill of the charge of the Tidal and Leveling Party. The latter officer resumed charge of the Eastern Frontier Party, but a few weeks subsequently was transferred to the charge of the Decean 'Topographical Party, on the death of Major Lees Smith. Thus the supervision of the recess duties generally-and more particularly the calculations for the reductions of the principal triangulation and the astronomical obser-vations-mainly devolved on Colonel Branfill, who, having brought all the work to a satisfactory completion and handed it over to Mr. Hennessey for final disposal in the Computing Office at the head-quarters of the 'Trigonometrical Survey in Dehra Dún, proceeded to Europe on furlough for two years. The parties employed in the operations which have now been described have been broken up; most of the officers have been transferred to Topographical Survers; the Native establishments have been reduced and transferred to the new Secondary Triangulation Party and the Nepal Boundary Survey.

II.-GWALIOR AND CENTRAL INDIA SURVEY (No. 1 TOPOGRAPHICAL PARTY).

43. The triangulation carried on by this party during this season lay

Personnel.

Major C. Strahan, R.E., Officiating Deputy Superintendent, 2 nd grade, in charge.
Mr. W. J. Cornelius, Assistant Survegor, 1at grade.
"P.J.W. Doran " " 1st "
"C.T.Templeton " " \quad 2nd "
A. Kiteren $\quad " \quad " \quad$ 2nd $\quad "$
$\begin{array}{lll}\text { A. Kiterhen } \\ \text { G. Pate } & " & " \\ \text { 2nd } & \text { ", }\end{array}$

Sub-Surveyor Abdul Gufir. Abdul Aziz. Ahmal Snyid. Jafir All. Abdal Rabman. Mr. J. K. Harris.
mainly in the Native State of Sirohee, but also included swall portions of Pálanpur and Dánta, the well-known hill station of Mount Âbu, falling about the centre of the triangulated part. The area thus prepared for future survey was about 1,620 square miles, all of which was more or less bad and difficult country.
44. The country surveyed in detail on the scale of 1 inch $=1$ nile lay in the three Rajput States of Marwar (Jodhpore), Mewar (Oodeypore), and Sirohee, embracing an area of 2,440 square miles, of which Major Strahan reports that 460 square miles were about as difficult and intricate as could well be found, whilst the remainder was singularly easy to delineate. The portions completed during the season are represented on the index map as part of sheet 85 (the difficult ground mentioned above) and sheets $91,92,95$, and part of 96 .
45. The programme of operations for the field season was somewhat interfered with, as Major Strahan had to pass a military examination, which necessitated his withdrawal for several weeks from the field operations to a military cantonment. He might have claimed to be relieved of all survey duty during this period, but being aware that no officer was readily arailable to take his place be did not take the leave to which he was entitled, but continued to

[^1]exercise general superintendence over the survey operations while preparing himself for the military examinations.
46. As the No. 7 Topographical Party has recently been transferred from Rajputana to Burma, the uncompleted portion of the ground which had originally been allotted to it for survey has been handed over to No. 1 Party to complete, which will in future be designated the "Central India and Rajputana Survey Party." The extent of area which it has to complete is about 22,500 square miles; of this area the greater part, being desert country, will be survejed on the half-inch to the mile scale.
47. During the ensuing season this party will extend the triangulation over sheets Nos. 101 and 102, and will complete the detail survey of sheet 99 and the remaining part of sheet 96 in addition to part of the country to the north, which has been previously triangulated by No. 7 Party.*

III.-KHANDESH AND BOMBAY NATIVE STATES SURVEY (No. 2 TOPOGRAPHICAL PARTY).

48. This party continued the survey of the Khandesh district as in

Personnel.

Major T. T. Carter, R.E, Deputy Superintendent, 2nd grade, in charge.

previous seasons, the field survey being made on the scale of 2 inches $=1$ mile, and the maps published on the scalo of 1 inch $=1$ mile. An area of 490 square miles of country was triangulated during the season; and in addition 1,025 linear miles of traverse were completed, fixing 1,034 village boundary tri-junction pillars. This completes the preparation for detail survey of the country remaining to this party.
49. The topography completed during the season covered an area of 1,554 square miles. Of this, upwards of 1,060 square miles was cultivated country. This area is represented on the index map as sheets $21,23,24$, and part of sheet 34, and is situated in the undermentioned talukas:-

		Squara milo.	
Amalner	\ldots	\ldots	260
Erandol	\ldots	\ldots	258
Páchora	\ldots	\ldots	450
Chálisgaon	\ldots	\ldots	228
Nandurbár	\ldots	\ldots	260
Nasirabad	\ldots	\ldots	5
Dhulia	\ldots	\ldots	9
Pimpalner	\ldots	\ldots	3
Nizam's territory	\ldots	81	

The country in sheet 34 , Major Carter reports as being very unhealthy ; it being impossible to send surveyors into it before the beginning of April. It is chiefly forest land inhabited by Bhils. They attribute the unhealthiness of their district to the water absorbing poisonous qualities from the roots of certain shrubs. Even in April and May the parties have to be numerically stronger than usual to fill the places of men suffering from fever.
50. It is expected that during the ensuing field season the remainder of the country allotted to this party will be finally surveyed. Arrangements have therefore been made for this party to take over the portions of Malwa that have not as get beon surveyed by No. 5 Topographical Party, which is about to be transferred to Mirzapur. \dagger

[^2]No. 2 PARTY.
index to the sheets of the Khandesh \& bombay native states topographical survey,
On the Scales of 1 Inch $=1$ Mile and 2 Inches $=1$ Mile.
To accompany Surveyor General's Report for 1881-82.

[^3]at the Surveyor General's Office, Calcutta, November 1862.

INDEX TO THE SHEETS OF THE BHOPAL \& MALWA TOPOGRAPHICAL SURVEY,

On the Scale of 1 Inch $=1$ Mile.

To accompany Surveyor General's Report, 1881-82

INDEX TO THE SURVEY OF SOUTH SYLHET AND TIPPERAH HILLS.

No. 6 PARTY.
INDEX TO THE SHEETS of the GARO, KHASI, and NAGA HILLS and NORTH EAST FRONTIER TOPOGRAPHICAL SURVEY,
On the Scale of 1 Inch $=1$ Mile, $\frac{1}{2}$ Inch $=1$ Mile, and $\frac{1}{4}$ Inch $=1$ Mile.

Published under the direction of Tieat. Gencral J. T. Walker. C.B., R.E., F R.S., Surveyor Genorat of India,

IV.- BHOPALAND MALWA SURVEY (No. 5 TOPOGRAPHICAL PARTY).

51. The work of this party during the season under review was in continua-

Personnel.

Major J. K. Wilmer, B C., Deputy Superiatendent 4th grade, in chargo.
Mr. C. F. Hamer, Surveyor, 4th grade.
" E. A. Wainright, Assistant Surveyor, 1st grade.
" E. A. Kitchen " ", 16t
$\begin{array}{llll}\text { ", H.T.Kitchen " } \\ \text { W. H. Lilley } & \text { " } & \text { " } & \text { 18t } \\ \text { " }\end{array}$ Süb-Survejor Prem R:ij."

Harlal Sing.
Kriato Dhan Chatterjec.
Gobardhnn Dass.
Shiv Cbaran.

Oodeypore, Partábgarh, and Dúngarpur. tion of that previously carried ou-a topographical survey on the scale of 1 inch $=1$ mile of the Native States of Central India. The country surveyed during the season fell chiefly in the territories of Bánswára, With the exception of about 190 square miles of country, which being in the table-land of Central India was open, well-cultivated country, the whole aren surveyed in detail consisted of very hilly, jungly, intricate country. A considerable portion of the Mahi river fell within the season's work. The total area surveyed in detail was 1,096 square miles.
52. The triangulation completed during the season covered about 1,096 square miles. In addition to the topography on the standard scale, the cities of Bánswára and Jaora were surveyed on the scale of 6 inches $=1$ mile. The party is reported to have suffered considerably from fever during the field season.
53. During the ensuing season a portion of the party will be employed in completing the topography of sheet 49 , for which the requisite basis of triangulation has already been prepared. The bulk of the party will, however, be transferred from a Native State to British district, Mirzapur, with a view to completing the topography which is required in connection with the cadastral survey operations now in progress in that district. The completion of the survey of Malwa has been allotted to No. 2 Topographical Party.*

V.-SYLHET, KHASI, AND GARO HILLS SURVEX (No. 6 TOPO. GRAPHICAL PARTY).

54. This party took the field early in December to carry on, at the parti-

Perronnel.
Bt. Lieutenant-Colonel R. G. Woolthorpe, R.I., Assiatant Superintendent, 1st grade, in charge.
Mr. A. Chennell. Surveyor, 4th gride.

- J. McCay, Assistant Surveyor, 2nd grade.

, A. Ewing "" " 3rd Süb-Surveyor Shnh Nüsirudin. Fnida Ali,
and nine others.
cular request of the Chief Commissioner of Assam, the work previously commenced, of surveying the lands in South Sylhet, which, owing to their being waste, hilly ground, had been left unnapped by the revenue survey of that district. These lands are now being rapidly taken up for the cultivation of tea.

55. The country under survey consisted of the lower spurs of the Tipperah hills running northwards past the British boundary into the plains of South Sylhet, as well as the isolated group of low hills which lies between Fenchugunj and the Manu river. These tracts of country, hitherto described on the maps as "hills covered with impenetrable jungle," are rapidly becoming very valuable, as they are being taken up and opened out for tea cultivation. This survey is made on the scale of 2 inches equal to 1 mile, and during the season an area of 244 miles was completed. The boundaries of certain tea grants met with were also surveyed, a linear distance of 47 miles of traverse having been run in order to fix them.
56. In addition to the above, a portion of Hill Tipperab, covering an area of 222 square miles, was surveyed on the smaller scale of $\frac{1}{2}$ inch equal to 1 mile.
57. Lieutenant-Colonel Woodthorpe reports that the country is very diffcult by reason of the dense bamboo and tree jungle with which all the low hills are covered, the work there being necessarily slow, as each small stream and its affluents havo to be carefully traversed with compass (or plane table) and chain, checks being made by cross lines and such independent fixings of

[^4]position as can be obtained. The heavy storms so prevalent in March and April very much impeded, and finally put a stop to, the work at the end of the first week in April, after which work became impossible.
58. The programme of this party for the ensuing season is to continue the work westwards from where it was left off in the previous year, and it is boped that the work in South Sylhet will be finished during the season.*

VI.-THE RAJPUTANA AND SIMLA SURVEYS (No. 7 TOPOGRAPHICAL PARTY).

59. This party, reduced in strength by the transfer of three European

Personnel.

Mr. G. A. McGill, Surreyor, 1st grade, officining in clurge.
Mir. J. II. Wilson, Assistant Surveyor, 1st grade.
G. L. Fleming ", ",

Sub-Surveyor Mndhu Sudan Dute".
Kalka Persad.
Sher Sbuh.
Hossein Buksh,
and two npprentices. assistants, continued the survey of the Rajputana States, in accordance with the programme set forth in paragraph 59 of the General Report for last year.

The detail survey, which is executed on the scale of $\frac{1}{2}$ iuch $=1$ mile, was carried on mainly in that part of the Jodhpore State which is shown on the index map as degree sheet xx , a small portion of degree sheet xix being also surveyed. An area of 5,611 square miles was completed.
60. The country met with in degree sheet xx is described as being "unquestionably the finest that this party has had to survey for the past five years." Here the usual rolling sand hills and ridges of the desert are replaced by extensive plains composed of sandy clay, all more or less fertile and varied by clumps of rocky hills.
61. The triaugulation was continued during the season northwards over degree sheet xyirf, and the remaining portion of degree sheet xix (vide index map), embracing an area of 3,500 square miles. Degree sheet xvin is described by Mr. McGill as being the worst bit of desert ground he has seen, being almost devoid of villages, and water being exceedingly scarce, and, when met with, often poisonous. These troubles are fortunately in part compensated for by the extreme healthiness of the climate during the winter months.
62. This party bas now been transferred to Burma, and will be merged into the Burma Topographical Party, the country remaining for survey being handed over to No. 1 Topographical Party for completion, as already stated in paragraph 40. \dagger

VII.-THE MYSORE SURVEY (Nos. 8 \& 9 TOPOGRAPHICAL PARTIES).

63. The operations of this survey during the year under review have been conducted by Major Thuillier, R.E., who resumed charge of the party on the 20 ti October 1881 after returning from furlough.
64. The Europoan establishment

Personnel.

Major H. R. Thrillier, R.E., Deputy Superintendent, 1at grade, in charge.
Lieutenant F. B. Longe, R,E., Assistant Superintendent, 3rd grade.
Mr. E. S. P. Alkiagon, Surveyor, 3rd grade.
L. Pocors ${ }^{*}$,. 3rd "
A. J. Jnmes \quad 3rd ${ }^{\prime}$
F. Kitclen, Δ saislant ", lst "
W. Slotesbury , ", 1st ",
, II. Toild \quad, \quad, lat
J. Kennedy ", ", 3rd ",
. J. A. Higgs "̈ "̈rveyors 3rd "
and 10 native sub-survegors.

- During the recess only.
during the field season was reduced to six Surveyors and Assistant Surveyors. 'This was due to casualties from the effects of the malritious climate in the Western Ghatts, whero the party had been employed during the two previous years, and which resulted in the death of the senior Surveyor, Mr. Chew, and necessitated the transfer of two of the Assistant Surveyors to other parties working in more hoalthy districts. It was found necessary thercfore to modify the programmo proposed in the last report.

[^5]No. 7 PARTY.
INDEX to the SheETS of the RAJPUTANA TOPOGRAPHICAL SURVEY,
On the Scales of 1 Inch $=1$ Mile and $\frac{1}{2}$ Inch $=1$ Mile.
To accompany Surveyor General's Report for 1881-82.

INDEX to the sheets of the MYSORE TOPOGRAPHICAL SURVEY,
On the Scale of 1 Inch = 1 Mile.

INDEX to THE SHEETS OF THE TOPOGRAPHICAL SURVEY, DISTRICT KOHAT.

To accompany Surveyor General's Report for 1881-82.

65. As a large area of ground hadbeen previously prepared for survey no further triangulation was required, and the operations were confined to topography. The districts in which the operations lave been carried on during the year are Slimoga, Kadur, Hassan, and Chitaldroog; the two first being in the Malnád or highland region, and the others in the Maidan or open and undulating country.
66. The out-turn of detail survey on the scale of $1 \mathrm{inch}=1$ mile embraces an area of 4,226 square miles, of which 1,460 square miles are in the Malnád and 2,766 square miles in the Maidan. In the former the work was exceedingly difficult, and the same obstacles to progress were met with as had been before encountered in the western parts of the province and previously described, the constant use of the chain being necessary. Tte work has been tested by 423 linear miles of check line and traverses, and was found to be accurately and carefully done. Numerous heights have been fixed, which will greatly increase the value of the final maps.
67. The results of this season's work will furnish material for the publication of standard sheets $10,11,14,15,19,23,24,25$, and 30 . This very satisfactory out-turn of work, with its consequent low relative cost, Major Thuillier attributes in a great measure to the unusually good health enjoyed by the surveyors.
68. During the ensuing season the triangulation will be continued in degree sheets xı and xiv, the detail survey being carried on in sheets 1 to 9 inclusive, and sheets 12, 13, 55, and 56.*

VIII.-KOHAT DISTRICT SURVEY.

69. This party is engaged in making a standard topographical survey of the Kohat district on the scale of 1 inch $=1 \mathrm{mile}$, and also in bringing up the final mapping of the surveys in Northern Afghanistan, which were executed during the late war. It took the field in December, weak both in European and Native Surveyors, and was subsequently still further weakened by casualties.
70. Major Holdich himself was not able to take the field on the 4th Feb-

Personnel.

Brevet. Mnjor T. H Holdich, I.E., Deputy Superintendent, officinting 3rd grade, in chncge.
Mr. T. E. M. Clnndius, Surveyor, 4th grade.
"W. W. MeNair $" 4$ th "
"R. F. Warwick, *Aesistnot ", 3rd "
Sub-Surveyor Esuf Sharif.
" Stam Bux.

Hira Sing.
Atma Sing. Kudar sharif.* Syid Malibub.

- During the recess only.
ruary, having to pass a military examination, which required him to reside for a time at a military station for the purpose of preparing for it.

71. 'The triangulation was carried on by two separate parties. Major Holdich took the north-east corner of the district, and triangulated that pertion of country lying between Khushálgarh and Attock. He covered an area of about 500 square miles, and reports the country as generally very rugged, but not difficult for triangulation. The secondary triangulation of this district, which was executed some 30 years ago, was found of great assistance, and a large saving of time resulted from employing the points then fixed. Mr. McNair was employed in triangulating the country lying between Latammar and Bannu, which consists mainly of flat, open, sandy ground, its very flatness rendering it difficult to find and fix points by triangulation.
72. The country topographically surveyed consisted of the upper valleys of the Kohat and Teri rivers, the Surdag hills, and the Lawafghar hills, with the low-lying plains at their foot on the west, bordering the Bannu district. A total area of 1,344 square miles was completed, a great portion of which was very intricate ground, requiring great care in delineation.
73. In addition to his other work, Mr. McNair fortunately succeeded in forming such friendly relations with one of the Waziri Chiefs that he was inken under tribal protection to make a recomaissance of the tract of independent territory lying cast of the Kurram river and immediately north of Bannu,

[^6]which is inhabited by the Daresh Khel Waziris, and embraces the well-known range of hills culminating in the Kafir Kot, which Mr. McNuir is the firat European to have visited. During the forthcoming season the topography will be coutinued, and probably completed in this district. A large scale plan of Kohat City will also be undertaken.
74. During the recess Major Holdich and his party were chiefly employ. ed in constructing the final mapping of the surveys in Northern Afghanistan.*

IX.-THE GUZERAT TOPOGRAPHICAL SURVEY.

75. During the year under review the charge of this party has again

Personnel.

Colonel C. T. Haig, R.E., Deputy Superintendent, 2nd grade, in charge.
Captain J. R. Hobdny, S.C., Assistant Superintendent, 2nd grade.
Mr. A. D'Souza, Surveyor, 1at grade.

- A. D. L. Christie .. 4th "
, C H. Mcalee \quad ", 4th
", C. Tapsell, Assistant ",
" G. D. Cusson
, S. F. Norman
" C. F. Norman
$\begin{array}{llll}\text { C. A. Norman } & " & \text { 3rd } & \text { 3rd } \\ \text { ". } \\ \text { A. George } & \text { 3rd } & \text { ", }\end{array}$

Sob-Surveyor Gopal Visbinu.
, Lakshionn Ghorpade. ï Bhan Gorind, and 16 others.
devolved on Colonel Haig. Four descriptions of work have been carried on, viz.-

First, the ordinary topographical survey of Native States, executed on the scale of 2 inches $=1$ mile, and published on the 1-inch scale.

Second, the preparation of a series of maps on the 2 -inch scale, comprising British territory in detail and foreign territory in skeleton, and for the former utilising the maps of the Bombay revenue and settlement surveys as far as practicable

Third, the survey of the Dang Forests
on the 4 -inch scale.
Fourth, the survey of the city, cantonment, and environs of Surat on the scale of 12 -inches $=1$ mile.
76. The ordinary topographical work was carried on over an area of 1,287 square miles, contiguous to and in continuation of the area previously surveyed. It is territorially divided as under-

The ground surveyed is situated in four sheets, 76, 35, 36, and 37, two of which- 76 to the north and 35 to the south-comprise the Native States, and have therefore been drawn on the 2 -inch scale for reduction and publication on the 1 -inch scale. Of sheet 36 only the western half has been surveged; its publication must therefore lie over till the whole is complete. The country surveyed in the fourth sheet consists of irrcgular areas outlying the Dangs. When the large scale survey of the Dangs is reduced, this work will be incorporated with it, and the ordinary standard sheet on the scale of 1 inch $=1$ mile, published.
77. An arca of 152.3 square miles in the Dang Forests has been surveyed on the 4 -inch scale, adding five sheets to this series of maps. Four-fifths of this area were surveyed on the contour system by means of water-lerels, contours being drawn at vertical intervals of 25 fcet. This work was done experimentally, and for the most part by Native surveyors, with a view to ascertaining whether the system might be introduced without any material increase of cost in supersession of the long-established system of eyesketched horizontal hachures. The water-level contours are of course a great improvement on the eyc-hachures, and it was found that they could be executed alnost as rapidty, even with little practice, und that the delay at first may be entirely put down to the change from one system to another. It is expected that the survey of the Dangs will be completed during the ensuing field season.
78. The strvey of the city, cantonment, and environs of Surat includes an area of nearly 25 square miles, of which, however, 2.7 square miles within the city walls, having been previously carefully mapped and published on a large scale by the Guzerat Revenue Survey, was merely reduced to the 12 -inch scale and incorporated with the new work.

[^7]INDEX CHART of the GUZERAT SURVEY.

[^8]
Numberd eoctions in athoelte 14, 49, $50,80,81$ and 89 indiento publications on sectle of 4 inches to the mile
Ditto 2 in other hiects indiegte 2 incoh oallo publication of Britab Territor.

INDEX CHART OF THE CUTCH TOPOGRAPHICAL SURVEY.

No. 3 BEVY, PARTY.

79. The operations of the past season bring the total area topographically surveyed in Guzerat up to about 15,686 square miles, leaving about 14,850 square miles to be done hereafter. Though the out-turn of work on the 2 -inch scale is rather less than that of the previous year, the deficiency is more than counterbalanced by the largely increased area of work executed in the Dangs and the Surat large scale survey.
80. During the season an area of 1,705 square miles was prepared by triangulation and traversing for final survey, making, with the area prepared in previous seasons, an aggregate in advance of 3,400 square miles.
81. To meet the requirements of the Forest Department, the Bombay Government has expressed a wish that the survey of the Godhra, Kalol, and Halol talukas of the Panch Mahals should be prepared on the scale of 4 inches $=1$ mile, the scale of the survey as hitherto executed in Guzerat being too small to suit the special requirements of forestry. This will be commenced during the ensuing season. A request has also been made by the Government of Bombay that certain villages in the Kolwan taluka, in the Nasik district, should be surveyed at an early date on the increased scale of 8 inches to 1 raile, with a view to the settlement and domarcation of the forests therein.*

X.-THE CUTCH TOPOGRAPHICAL SURVEY.

82. The operations of this party were conducted in a manner similar to

Personnel.

Lieatement-Colonel A. Pullan, S.C., Deputy Superiatendent, 3rd grude, iu charge.
Mr. N. C. Qirynne, Survegor, 4th grade.
W. A. Fielding, Assistant Surveyor, 1 st grade.
$\begin{array}{lll}\text { George Hall } \quad " & \text { 2nd } \\ \because & \text { P. F. Prunty }\end{array}$
Sub-Surveyor V. n. Gadbole.
" N. D. Patwirdhan.
" G. R. Hhopatkar,
and seven others. that of last year, the mainland of Cutch being surveyed on the scale of 2 inches $=1$ mile for publication on the 1 -inch scale, while the sandy waste composing the Rann was mapped on the $\frac{1}{2}$-inch scale. Of the former, an area of 1,619 square miles was completed, and of the latter 598 square miles, all lying immediately to the north of Bhuj, the capital of the province. This admits of the publication of sheets $17,18,19,20$, and 21 of the surveys, the two first on the $\frac{1}{2}$-inch scale and the remainder on the 1 -inch scale.
83. Six hundred and twenty two linear miles of traverse with chain and theodolite were carried over the work as a check on the plane-table survey, and also to furnish points for the $\frac{1}{2}$-inch survey of the Rann. An area of 1,377 square miles was triangulated in advance on the western extremity of the Cutch Peninsula, which it is proposed to survey in detail next season.
84. The season under review was an unhealthy one, most of the Europeans and Natives being at one time or other laid up with fever. \dagger

XI.-THE SURVEY OF DISTRICTS MEERUT AND BULANDSHAHR, NORTHWEST PROVINCES (No. 3 PARTY, REVENUE BRANCH).

85. The field operations of this party were resumed on the 9th October

Personnel.

Mr. E. T. E. Johnson, Depaty Saperintendent of Sorrey, 3rd grade, transferred from No. 6, or late Jaunpur Survey, on 219t Novemher 1881.
Major W. II. Wilkins, Drputy Superintendent of Survey, 3rd grode, trangferred to British Buruas from 4th November 1881.
Mr. ©. H. Cooke, Assistant Seperintendent, officialing 1at grade, nppointed to the party od return from furtough on loth J whe 1882
Mr. J. Tudd, Survegor, 3rd grade, in charge from 4 th to 20th Novemher 1881.
Mr. R. O. D. Ewing, Assistınt Surveyor, lat grnde, tranblerred to tha Drputy Survojor-Gevernl's Offer from 17th June 1882.
Mr. C. W. Wilkon, assigtant Suryeyor, lat grade. C. W. F Srycrs

33 sub-surveyors, computers, de.

1881, whilst the party was under the superintendence of Major W. H. Wilkins. On Major Wilkins' transfer to No. 8 party in British Burma he made over charge, temporarily, on the 4th November, to Mr. James Todd, surveyor, who held it till 20 th November, when ho was relieved by Mr. E. T. S. Johnson. Field work was closed on the 15th April, when the party moved up to recess quarters at Mussoorie.
86. The chief work of the party has been a topographical survey in districts Meerut and Bulandshahr on the 2 -inch scale; but for the low-lying lands extending

[^9]along the Ganges and Jumna rivers in district Bulandshahr, the scale has been increased to 4 inches. With the 4 -inch survey along the Jumna a small area of the Delhi district of the Punjab has also been surveyed, so as to include the entiro aren liable to be covercd by the river in one series of maps; and, similarly, on the Ganges river, small portions of the Moradabad and Budaun districts have been surveyed and mapped with the opposite low-lying tract of Bulandshahr. On the maps of the 2 -inch survey, village boundaries have been inserted by transfer frou the settlement maps; with the 4 -inch survey, village boundaries have been surveyed. The survey has extended down to the parallel of latitude $28^{\circ} 15^{\prime}$, and the area surveyed on the different scales and in the several districts is given in the following statement : -

Districte.						2-inch senle, in square miles.	4 -inch senle, in square miles.	Total bquare miles.
Meerut	. ${ }^{\prime}$'.	...	\cdots	32, 03		323.0:3
Bulandshahr	1,173.02	138.00	1,312.02
Delhi	$5 \cdot 51$	5.51
Morndabad	...	\cdots	\cdots	$7 \cdot 00$	7.00
Budam	\cdots	\cdots	\cdots	6.47	$6 \cdot 47$
				Total area	\cdots	1,496.05	15698	1,653.03

In addition to the above, $1,385 \cdot 10$ square miles lave been traversed in districts Bulandshalir and Aligarh, in preparation for topographical survey in season 1882-83.
87. The same system of survey has been followed as in previous seasons, and the 2 -inch survey has been made as minute as the scale will allow. Check lines aggregating 309 linear miles were measured as a test of this detail survey. The angular observations of the traverse survey were checked by 61 azimuths, observed at suitable intervals along the main circuits, and connections with stations of the Great Trigonometrical Survey enabled the chain measurements of the circuits to be adjusted to accord with trigonometrical distances.
88. The transfer of the village boundaries from the settlement maps to the 2 -inch sheets was provided for by adopting the trijunctions of the boundaries, which had been permaneatly marked at the time of the settlement survey, as traverse stations. These trijunctions, which originally were low masonry platforms, are the only permanent marks which have been left at traverse stations; and these are not very satisfactory, as many of the platforms were found in a dilapidated condition. Under instructions of the Government Resolution No. 45S, dated 4th September 1882, paragraph 5, the permanent marking of all the stations, of which there are many more besides the stations at the trijunctions, will in future be attended to.
89. During next season, the detail survey of district Bulandshahr will be completed, and that of district Aligarh will be continued. The preparatory traverse survey will be extended into district Etah.
90. The fair maps of the completed area have been drawn and submitted ready for publication by photozincography. They consist of-

19 sheets on 2 -inch scale for publication on same scale.
19 sheets on 2 -inch scale for reduction to 1 -inch scale.
The sheets of the Ganges and Jumna rivers survey, 27 in number, have also been drawn, but these will not be published. Tracings of them have been furnished for record in district offices.*

[^10]DTOOAN AND TONTRA MOPDCREAPEUCAI SUTYIT.

XII.-THE SURVEY OF THE SOUTHERN COLLECTORATES OF THE DECCAN bombay Presidency (No. 11 Party, REVENUE BRANCH).

91. The field operations of this party were resumed, under the control of

Iersonnel.
 Major D. C. Andrew, on 10th November 1881, and closed on 10th May 1882. The survey has been entirely topographical, on the scale of 2 inches to a mile, and is mainly comprised in standard sheets 60, 66 , and 90 of the Deccan series. A few small portions in other sheets have also been surveyed, and the survey has operated in several collectorates and native states, as is shown in the following statement:-

				Square miles.
Sholapur collectorate	\cdots	472
Satara ditto a	and 3 dependent states	.."	...	742
Kaladgi ditto0	...	51
Belgaum ditto a	and 1 dependent state	. \cdot	...	70
Kolaba ditto	\cdots	\cdots	72
Kolhapur state and 7 other dependent states under the Southern				
Mahratta Agency	y...	537
Nizam's dominions	130
		Total	...	2,074

The portion of the Nizam's dominions has been surveyed, as there are no maps of this tract forthcoming with the records of the Hyderabad survey.
92. Besides the abore area of topographical survey, 2,016 square miles have been triangulated and traversed in advance for topographical work next season.

The topographical survey has represented the features as minutely as the scale would adnit of, and grass-lands have been carefully separated from cultivation. This work has been tested by 368 linear miles of measured check surveys. The heights of 113 stations have been determined trigonometrically. The country is reported to be undulating and possessing no features worthy of note, except a range of hills separating the Sholapur from the Satara district. The villages are few and far apart, and the scanty supply of good drinking. water was severely felt by the party when the hot months set in.

The triangulation stations have been well marked with stones about 2 feet long sunk in the ground, over which, after completion of the obscrvations, mounds of stones and earth were raised. The traverse stations have, as a rule, been placed on demareated trijunctions of fields, a special mark being cut on the demarcation stones which have been adopted as stations.
93. The fair drawing of the standard-sized sections has all been completed during the recess, 33 two-inch sections having been drawn and sent to Calcutta ready for publication on the 1 -inch scale by photozincography.

The survey of the city of Sholapur on the scale of 80 inches to a mile, at the expense of the municipality of that town, has been completed, and the shects, 59 in number, finally drawn and rendered in a style fit for printing by photozincography. The printing will be done in the Government Photographic Press at Poona, according to the arrangements that may be made by the Sholapur Municipality for defraying the printing charges. A survey of the town of Pandharpur, in the Sholapur district, on the 80 -inch scale, at the expense of the municipality, has been commenced.
94. The recess office of the party was inspected at Poona during August by the Deputy Surveyor-General, who was satisfied that much care had been taken to render the survey searching and accurate.*

[^11]95. The order for undertaking this survey was communicnted in letter

Personnel.

E. T. S. Johnson, Eeq., Depnty Superintendent, 3rd grade, in charge up to 15 th November 1881.
Majorf S. H. Cowan, Officinting Deputy Euperincendent, 4 th grade, in charge from 7th April 1882. Lieutenant-Colonel E. P. Leuch, V.C., R.E., Assistant Superintendent, 1at erade, in charge from 16 th November 1881 to 6th April 1882.
Mr. J. S. Pemberton, Surveyor, 3rd grade.
„J. S. Swiney, Assistant Surveyor, lat grade, trunsferred to No. 7 party on 14th April 1882.
Mr. C. S. Kraal, Assistnnt Surveyor, Srd grade.
P. C. H. Smart "

31 sub-surveyors aud others. of Calcutta, who addressed the Bengal Government in March 1881, stating that an exact triangulation and topographical survey of the banks of the river were much needed to bo used as a basis for new river cbarts, and asking that the co-operation of the Survey Department might be obtained.
97. The Surveyor-General had long been aware of the defective state of the maps of the Hooghly river, the best of which had been compiled in 1875 to meet the requirements of the Torpedo Committee; but this map is on a scale (4inches $=1 \mathrm{mile}$) quite inadequate to the proper delineation of the country bordering the river in the vicinity of Calcutta: and the only materials available for the greater part of the compilation had been the surveys of the 24-Pergunnahs in 1847-49 and district Hooghly in 1869-73. He accordingly took advantage of the opportunity offered by the completion of the cadastral survey of Jaunpur district, which left No. 6 party of the Revenue Branch at his disposal, and recommended to the Government of India (letter No. 166F, dated 17th June 1881) that the resurvey of the Hooghly river should be commenced in the ensuing field season.
98. The party assembled at Barrackpore on the 10 th November 1881, under charge of Mr. E. T. S. Johnson, who was relieved on the 16 th by Colonel Leach. Colonel Leach remained in charge until the 7 th of April 1882, when he went on furlough and was succeeded by Major S. H. Cowan.
99. On the left bank of the Hooghly river the tract to be surveyed extends from the northern limit of the 24-Pergunnahs near Kanchrapara station of the Eastern Bengal Railway, by Barrackpore, Baranagar, Calcutta, Akra, Atchipur, Diamond Harbour, and Channel Creek to Pitt's Point on the sea-face of the Sundarbans; on the right banls, from a point opposite Kanchrapara through Hooghly, Chinsurah, Chandernagore Seranpore, Bali, Howrah, Fort Glo'ster, Ulubaria, Gewankliali, \&c., to the Sola Mohan Creek in district Midnapore. The width of the strip surveyed on each bank varies from a quarter mile to one mile and upwards. The suburbs of Calcutta known as Alipur, Kidderpur, and Garden Reach are to be surveyed, and also the whole of Saugor Island. Barrackpore, Calcutta, and the Government estate of Punchannogram on the left bark, and Chandernagore on the right bank, are excluded.
100. The Port Officer at first asked that the survey from Calcutta to Diamond Harbour might be made on the scale of $\frac{1}{12,000}$ ($5 \cdot 28$ inches to a mile), and from Diamond Harbour to the sea on the scale of $\overline{\pi 4,000}$ (2.64 inches to a mile); but the Vice-Chairman of the Port Commissioners recommended in November 1881 that a uniform scale of six inches to a mile, or $\frac{1}{10.560}$, should be adopted : and this scale has been used from Atchipur downwards. Above Atchipur the scale is 16 inches to a mile.
101. The field season commenced on the 10 th November, but the early operations were completely paralyzed by a severe outbreak of cholera among the khalassies on the $17 \mathrm{th}, 18 \mathrm{th}$, and 19th of November, which resulted in 14 seizures and 14 deaths, and necessitated the insulation of the men. There had been unfortunately no opportunity of preparing traverses in advance, so that there was considerable delay before the detail survey could bo fairly commenced. The establishment was withdrawn from the field between the 15th and 25th of Junc.

No. 6 REV. PARTY.

Fhotozincograpined at the Surwyor Gercrale Oftoe Colcutta

INDEX to the SHEETS of the BALUCHISTAN SURVEY.

To accompeny Surveyor General's Report for 1881-82.

Published under the direction of Lieut. General J. T Waiker, C.B., R.B. F.R.S., Surveyor General of Indis
ai the Surveyor Generai's Office. Calcutta, December 1882
102. During the past field season the left bank survey was completed down to the Punclannogram boundary near Cossipore, excepting the tract immediately round Barrackpore and some small areas near Baranagar. All the country between the river and the Eastern Bengal Railway was surveyed; and in places where the railway approaches the river, the survey was carried beyond it, so as to give the tract a uniform width of about one mile. The right bank has been completed from the northern limit opposite Kanchrapara down to Konnagar, but on this bank the strip surveyed is only a quarter mile wide. Large scale maps of this tract, sufficient for most purposes, have already been published (1873); and to have worked up to one mile from the river would have increased the work enormously, as a large proportion of the area is closely built over. The above work has been surveyed and plotted on the scale of 16 inches $=1$ mile. A commencement has also bcen made of the 6 -inch work, and both banks of the river from Atchipur to near Brul Semaphore Tower, or for about 6 miles, have been surveyed on this scale. The total area surveyed on the 16 -inch scale was 21,063 acres (32.91 square miles), and on the 6 -inch scale 9,137 acres ($14 \cdot 28$ square miles). The areas remaining for survey in 1882-83 are estimated at:-16-inch work, 20,874 acres $=32.6$ square miles ; 6 -inch work, $1,12,960$ acres $=176.5$ square miles.
103. The area surveyed on 16 -inch scale has been closely tested by lines of check surveys and by resurveys of small blocks. The measured traverses have been connected with the numerous stations and points of the Great Trigonometrical Survey falling within the area surveyed, and the chain measurements have been corrected to accord with the trigonometrical distances. The bearings of the traverse lines were checked by 16 stellar observations and 4 azimuths of the Great Trigonometrical Survey.
104. The 6 -inch work of this party has already been utilised by the River Survey Department, and a chart, showing the Atchipur Bar and the reach of the River Hooghly from Atchipur to Raipur, was printed in July 1882, in which the shore details were copied from the original field sheets of No. 6 party and the soundings were taken during the month by the River Survey Department. During next field season the survey of the shore details from Calcutta to the sea will be completed on the same scale, and will similarly be made available to the public as fast as the soundings of the various reaches of the river most urgently requiring revision are completed. This work is being energetically pushed on by Lieutenant Petley, R.N., and the result of the joint surveys and of the leveling, now in progress, will soon be to furnish an admirable survey of the River Hooghly.
105. Iron sockets have been planted by the River Survey Department along the banks at an average distance apart of about one mile: between each of these another permanent mark will be fixed by No. 6 party; the positions of all these marks will be carefully determined and plotted, and they will afford the means of accurately recording all future changes in the channel of the river, besides being always useful as poiuts for the River Survey to work upon in running their lines of soundings, which, owing to the incessant fluctuations of the sauds and shoals in the river, require continual attention and revision.*

XIV.-THE BELUCHISTAN SURVEY.

106. The work in hand by this party, at the time of publication of last report, was coutinued throughout the winter by it under Mujor Beavan, in the country lying between Quetta and Kelat; the season's work comprising more especially that part adjacent to the Bolan and Rodbar passes. The topography was exccuted on the $\frac{1}{2}$-iuch scale, but with varying degrees of detail and accu-

[^12] racy, according as the country was more or less safe for the surveyors to work

[^13]in. Thus the triangulation could not always be pushed forward in advance of the topography as is desirable, but in several instances the two operations had to be carried on simultaneously, the triangulation correcting instead of furnishing a basis for the topography. About 4,300 square miles of country were thius mapped.
107. Major Bearan himself received orders to accompany a military expedition under Brigadier-Gencral H. C. Wilkinson to open out the routes between Thal Chotiali and Dera Ghazi Khan. In addition to making a planetable reconnaissance of such portions of the route taken-viá Mandai, Thal, and Chnmalang-as were hitherto unsurveyed, Major Beavan took advantage of such opportunities as occurred for getting observations to complete the Sewestan triangulation. Subsequently Major Beavan, accompanied by Mr. Corkery and under the protection of an escort of Marris, furnished by the Assistant Agent, pushed forward into the Marri country in order to continue, as far as possible, the survey of that district.
108. The party left the field for recess quarters on the 25th March, having been in the field uninterruptedly for 12 months.
109. This survey will be continued during the coming season, the Native surveyors resuming work near Kelat to continue their previous work, and the European assistants being employed in extending the triangulation over the Khetran country and the Bugti hills.*

MAUZAWAR OR VILLAGE SURVEY.

XV.-DERA ISMAIL KHAN, MUZAFFARGARII, AND RATVALPINDI DISTRICTS (No. 1 PARTY, REVENUE BRANCII).
110. This party, under charge of Lieutenant-Colonel D. Macdonald, on Personuel.
Lieatennat-Colonel D. Mncdonnld, Deputy Superinteadent, 2nd grade, in churge.
Mr, G. H. Scote, Surveyor, 3rd grade, detached under settlement olficer of Rinmupindi from 13th December 1881.
Mr. W. S. Buttress, Surveyor, 3rd grade.
" A.J. Gibsou $"$ 3xd $"$
". 1. Toild, Off. " 4th ",
", G. Camplell, Assistant Surveyor, 2nd grade, returncal from furlough and joined this party od the afternoon of 21 st September 1882.
Mr. J. C. Kiclly, Assistant Surveyor, 3rd grade.
22 suo-survejors and others.
leaving its recess quarters at Murree, took the field in two sections. One section pro. ceeded to the Derajat to continue the survey of pargana Leiah of district Dera Ismail Khan, and to undertake the survey of the Thal portion of district Muzaffargarh; the second section proceeded to the "Kala Chitta Pahar" to continue the survey of that portion of the Rawalpindi district. Both sections completed the areas assigned for survey in each of the tracts, and the work accomplished is shown in the following statement:-

111. In the Derajat, pargana Leiah of Dera Ismail Khan had been prepared for survey by skeleton traversing during the previous season, and the topographical survey was therefore first undertaken there. Meanwhile, the traversing of pargana Simanwan of Muzaffargarh was taken in hand, and both traversing and topography were completed in that pargana in one season. The portion of pargana Sinanwan which has been surveyed is the entire tract of Thal country included in district Muzaffargarh, and which had been surveyed on the 1 -inch scale without village boundaries being delineated, when tho rest of the Muzaffargarh district was surveyed on the 4 -inch scale during 1855.56. The 4 -inch survey of the district is now complete. In pargana Sinauwan four principal stations of the Great Trigonometrical Survey have been incorporated with the measured traversos, the latter being corrected to correspond with the trigonometrical distances by introducing corrections which

NO, 1 REV. PARTT, INDEX MAP OF DISTRICTS DERA ISMAIL KHAN \& BANNU.

Atbhatied under the dircotion of Lieut Genernl I.T. Walker, C.D-R.E-FR.S., Surveyor General of Indin

Photoxiroographed at the Swreyor Gemenals oftoe, Calcutta
averaged 5.2 feet per mile. Observations for azimuth were taken at 23 traverse stations, and 242 linear miles of check surveys were measured.
112. In the Kala Chitta Pahar, owing to the rugged nature of the country, the topography was based on points fixed by triangulation, not on measured traverses. Colonel Macdonald, who has drawn up a few "notes" on the entire range, which are priuted in the appendix at page 30 , thus briefly describes the country under survey last season:-
"The hills were very broken, rough, and precipitous. There was a great scarcity of water. Provisions were difficult to prooure, and had to be brought long distances."

The rate of progress of the topographical survey in such country was necessarily slow. One-third of a square mile was the daily average outturn of each topographer, which is less than a quarter of the daily average of the men who were employed in the Derajat. The accuracy of the survey in all the sheets was tested, either by check surveys or by examination in situ.
113. The season's out-turn of fair maps is as follows:-

Of pargana Leiah 37 four-inch sheets (projected on rectangular co-ordinates) have been drawn, which complete the series for the Dera Ismail Khan district.

Of pargana Sinanwan, district Muzaffargarl, a special separate series of 69 shects, each sheet comprising $3 \frac{3}{4}^{\prime}$ latitude $\times 3 \frac{3^{\prime}}{4}$ longitude, has been drawn.

Of the Kala Chitta Pahar, 14 sheets have been drawn, completing a series of 27 sheets of the standard size of $3 \frac{3{ }^{\prime}}{}{ }^{\prime}$ latitude $\times 7 \frac{7^{\prime}}{\prime}$ longitude for the entire tract.

The drawing of the 4 -inch sineets of Murree and Kahuta tahsils, surveyed by this party from 1877 to 1880, is still incomplete, awaiting the adjustment of the forest boundaries.
114. Mr. G. B. Scott, one of the surveyors of this party, was deputed, at the request of the Government of the Punjab, during September, October, and November 1881, to the Sialkot district to survey two portions of the Chenab river, where there were disputes of long standing regarding the boundary between British territory and the territory of his Highness the Maharajah of Kashmir. Some village lands adjoining the disputed boundaries were also required to be surveyed, and Mr. Scott surveyed in all an area of 11.3 square miles. Mr. Scott's maps, showing also the lines of old boundaries by transfer from previous survey maps, which he prepared under the superintendence of Colonel Macdonald, have been photozincographed, and copies of them were furnished to the Government of the Punjab during January 1882.*
XVI.-THE SURVEY OF THE THANA DISTRICT (KONKAN), BOMBAY
PRESIDENCY (No. 10 PARTY, REVENUE BRANCH).
115. The field operations of this party were resumed under the direction

Personnel.

Major YL. Lees Smith, Officiating Deputy Superiutendent, 3rd grade, in charge to date of deatb, 23 rd A prill 882
Major J. Hill, R.E., Deputy Superintendent, officinting 3 Pd grade, in charge from afteruoon of 23rd June.
Captuin G. W. Martin, Officiatiog Assistnut Superintendent, 2 nd grade, joined this party on the $2+$ th Junc 1882, nad was tranaferred to Bombay Mint on September 1882.
Mr. A. MI. Luwson, Surveyor, 3 rd grade, in charge from 21th April 1882 to 23 rd June.
Mr. J. Newland, Assistant Survegor, 19t grade. W. M. Kelly ", " 2nd ", R. R. Dickinson " " 2nd "

20 sub-surveyors and olhers.

Novenber 1881. During the field season Major Lees Smith suffered much from malarious fever; he ought to have procceded on leave for the benefit of his health, but he remained devotedly at his post and succumbed to the disease at Poona on 23rd April. Major Lees Smith was possessed of considerable mathematical talent, and his loss to the department is much regretted. Mr. A. M. Lawson received charge of the party on the death of Major Lees Smith, and under his

[^14]charge field operations were brought to a close on 31st May. Major J. Hill relieved Mr. Lawson of the charge at Poona on 23rd June.
116. The scale of survey was 4 inches to the mile in place of the ordinary Deccan and Konkan scale of 2 inches to the mile. The change has been made under authority of Government of India, Home Department, letter No. ${ }^{\text {f }}$, dated 20th September 1881, in accordance with the resolution of the Government of Bombay, representing that maps on the 2 -inch scale are insufficient for the administration of forests, which cover large areas of the Thana district. It had been expected that the forests only need have been surveyed on the increased scale; but after due inquiry it was found to be advisable, on account of the forests being so much scattered over all parts of the district, to survey the whole tract on one scale. Another reason for surveging the whole tract on the 4 -inch scale was, that the boundaries of the forests had not been finaliy determined.

The forest officers, when recommending the adoption of the 4 -inch scale for forests in the portion of the Thana district remaining for survey, hare also urged the necessity for remapping the forests that had already been surveyed on the 2 -inch scale. Their recommendation, for the present, has not been allowed, but maps on the 2 -inch scale have been printed specially for forest purposes, in addition to the usual publication of the topographical maps on the 1 -inch scale.
117. The agreement with the Government of Bombay concerning the increase of scale is that the Forest Department of that presidency is to be charged with the additional cost of the more expensive survey. The area surveyed by tho party was 940 square miles, costing Rs. 50,181 ; of which, as extra cost of 4 -inch survey, Rs. 18,624 have been debited to the Government of Bombay.

In addition to the area which has been mapped, 450 square miles have been triangulated and traversed for detail survey next season.
118. The traverse stations of the survey are fixed on field demarcation stones with a special mark cut upon them. The heights of 208 points have been determined trigonometrically, fixing many valuable points, such as hill-passes, junctions if streams, wells, and mile-stones. The topograpliy has been executed by a close survey of all the details, and at the request of the Forest Department particular attention has been paid to recording the names of all peaks, valleys, passes, springs, shrines, \&c. The conformation of the hilly ground has been indicated by the system of horizontal shading, a vertical interval of 25 feet being preserved between the hachures. Towards the coast, the country surveyed is much cut up with tidal creeks and salt marshes; inland, towards the ghats, there is a very large area of hilly ground covered with forest; and in the centre of the tract, a small extent of open and cultivated country. The party suffered severely from the unhealthiness of the country from the time of taking the field up to January, and a large number of men were permanently incapacitated.
119. The drawing of 24 four-inch sections of the standard size, comprised within sheets Nos. 78, 79, 82, and 83 of the Deccan and Konkan series, has been completed, and the sheets will be published on the original scale. Reductions of the sections are being drawn for publication, similarly to the other sheets of the series, on the 1 -inch scale.
120. The recess office of the party was inspected at Poona during August by the Deputy Surveyor-General, who expresses himself well satisfied with the style of the work which had been executed.*

[^15]No. 5 BEV. PABTY.

Photozincographed at the Stureyor Gnerals Offloe Gaicutta
Aubliahedunder the direotion of Lient:Genexal J.T.Walkes. C.B-R.E.F.R.S., Surwevor General of India
Surwyor Generata Office Caloutta, Jonuory

CADASTRAL OR FIELD SURVEY.

XTII-MIRZAPUR DISTRICT, NORTH-WEST PROVINCES (No. 5 PARTY, REVENUE BRANCHI.

121. This party, under charge of

Personnel.

Colonel F. C. Auderson, Deputy Superintendent, 1st grade, in chnrge.
Mr. C. W. Camplell, Surveyor, 1 st grade. F. S. P. Atkinson " 'Jrd " traneferred "from No. 7 Topogruphical Survey Party from 1st October 1881, and transferred to Mysore 'TopoOctabher kral Survey from 30th April 1882.
Mr. E. G. Little,
R. Surveyor, ${ }^{\text {4th }}$ grade.
lit IR. B. Smart, Assistant
cranisferred to No. 8 Revenue' Party from"1st November 1881.
Mr. T. F. Freeman, Assistant Surveyor, 18t grade, on sich lenve from lat Duy 1880.
Mr. T. Shaw, Assistant Surveyor, 1st grade. W. D. Corbett, ${ }^{\prime}$ ' ${ }^{\text {Put }}$ " ${ }^{\text {st }}$ traneforred from No. 4 Revonue Party from 1st October 1881.
Mr. E. P. S. Hill, Assistant Surveyor, 2nd grade, O. D. Suart,
appointed from 1st Óctober $18 B^{\prime} 1$.
gu stib-surveyors and others.
Temporary Establishment.
253 field surveyors and others.

Colouel F. C. Anderson, returned from recess quarters at Nainital and resumed field work in the Mirzapur district on lst November. The season's operations in this district have included portions of parganas Bhagwat and Ahraura, situated in the Gangetic valley, and portions of parganas Kantit and Barhar, forming part of the up-lands. A small detachment of the party has been employed during the season in continuing the cadastral survey of a few villages in parganas Bazpur and Gadarpur, of district Tarai. The survey in both districts has been done on the 16 -inch scale, and the areas accomplished are shown in the following statement:-

Distaict.						Number of villages.	Square miles.
$\underset{\text { M'arai }}{\text { Mirapur }}$...	\ldots	\cdots	\cdots	\ldots	645	734
	...	\ldots	\cdots		...	19	16
				664	750

122. In the Mirzapur district, north of the Sone river, the preliminary boundary traversing of 329 square miles has been done in preparation for cadastral survey in 1882-83; and in the same district, south of the Sone, 1,790 square miles, comprising parganas Singrauli, Agori, and Dudhi, where a cadastral survey is not required, have been triangulated in preparation for a topographical survey.
123. Besides purely survey work, to which the operations of the Survey Department in carrying out cadastral surveys in the North-Western Provinces have hitherto been restricted, this party has been engaged during the past season in preparing, simultaneously with the maps, the village khasras, which in former years and in other districts have been drawn up by a separate establishment, working under the orders of a settlement officer, after the maps have been completed. This new duty of writing the khasras has been undertaken at the request of the Board of Revenue, in accordance with a scheme submitted by Colonel Anderson, who had been consulted by the Board and asked to suggest a remedy for the high aggregate cost of the entire operations going on in the permanently settled districts of survey and subsequent preparation of papers counected with the Record of Rights. Colonel Anderson considered that no appreciable reduction would be possible on the present cost of the survey, except, it might be, by an increase to the annual grant, so as to provide for a larger subordinate staff and an increased outturn; but he was confident that a large saving could be effected in the expenditure for the Record of Rights by utilising the survey staff:-

1st.-To fill in all the columns of the khasra by making the necessary inquiries during the progress of the measurements.
2nd.-To supervise the putwaris in the preparation by the latter of a copy of the khasra pari passu with the survey.
$3 r d$--To compile from the kliasras the "jummabundislips," i.e. the separate statements of fields held by each cultivator, learing the rent columns to be filled in by the putwaris.
4th.-To prepare fair copies of the khasras after the work of the settle. ment staff as regards disputes had been completed and attes. tations of proprietors and cultivators obtained.

Colonel Anderson estimated that the extra duties, as sketched above, would add Rs. 10 per square mile to the cost of the survey.
124. By Colonel Anderson's scheme, the lkhewats (statements showing the shares of rent paid by the proprietary body) would be prepared by the putwaris, and the adjustment of disputes as to names entered in columns 3, 4, and 5 of the khasra would be the first duty of the settlement staff, the existence of disputes being brought to notice by the surveyors in a list attached to the khasra. The settlement staff would then obtain the attestations of the proprictors and cultivators to the rent rolls; and finally, the fair copies of the khasras would be written in the Survey Office.

The Board of Revenue approved of the scheme as an experimental measure, and requested it might be carried on provisionally, leaving the question of its adoption for other districts to be considered when the experiment would be completed by the work of the settlement staff during the following season.

In practice, one very great advantage to the survey work itself resulted from the new duty of writing the khasra, in so much that the surveyors were able to secure the regular attendance of zemindars and cultivators to point out the boundaries of the fields, and thus their labour was much reduced by being sared from having to survey interior subdivisions of fields for want of information regarding the true field boundaries. When khasras are being written, the putwaris, to whom all the field boundaries are as a rule well known, must also be present. Specimens of the lchasras and jammabandi slips, specially designed by Colonel Anderson in consultation with the Collector of Mirzapur, are given at page 93 of the appendix.
125. The area surveyed included a large aggregate extent of hilly and uncultivated country which, it had been expected, might have been surveyed on the 2 -inch scale; but the cultivated tracts were found to permeate through all parts of the hills, and it was deemed more advantageous to include the whole country in the large scale survey than to separate small detached tracts for a two-inch survey. Out of the entire area of 734 square miles, the waste tracts and plots of waste mixed up with the cultivation are said to cover 371 square miles. In the cultivated tracts, 346,140 fields have been surveyed, giving - 67 of an acre as the avcrage size for each field if calculated on the cultivated area only, and $1 \cdot 36$ acres if calculated on the total area.
$1: 6$. The field survey has been carefully tested by check lines measured by the European assistants and Native inspectors, 207 linear miles of checks having been done by the former and 1,256 by the latter officers. 'The chain traverses have been connected with six Great Trigonometrical Survey stations, and a comparison of the results of the corrections shows that there was an average error in the chaining of 1.9 feet per mile. Azimuth observations were taken at 11 traverse stations. In the triangulation south of the Sone, which has been based on the rays connecting four principal stations of the Great Trigonometrical Survey, 29 secondary stations have been fixed, from which the positions of 330 intersected points have been determined.

The trijunctions of village boundaries had been, as usual, permanently marked by the district staff previous to survey. In addition to these marks, the theodolite stations of the boundary traverses have been marked by the surveyors with specially cut stones, the cost of which, as they are regarded as part of the boundary demarcation, is to a certain extent borne by the landowners. The surveyors have again been engaged in relaying many lines of boundary, according to the maps of Captain Wroughton's survey of 1839-41, where disputed lines could not otherwise be settled.
127. The cadastral survey in Mirzapur has been mapped on 955 sheets, and in Tarai on 22 shects. Of thesc, all the Tarai sheets and 573 Mirzapur sheets have been lodged in the Calcutta office; more than half the remainder are kept back on account of disputed boundaries. There are also 64 sheets of previous seasons awaiting final disposal pending the adjustment of boundaries. The general maps of Mirzapur are being drawn on the 2 -inch scale for publication on the 1 -inch; none have yet been completed, as there are still unsurveyed portions within the margins of the standard-sized sections.

The general maps of the Banda district on the 4 -inch scale, which were remaining, have been completed and lodged; and one-inch maps of this district from drawings made in Calcutta are now under publication.

No. 4 REV. PARTY.
N. W. PROVINOTS STRTIT

128. The Deputy Surveyor-General inspected the office of the party at Nainital during October. He considers that Colonel Anderson is deserving of great credit for the readiness with which he has set himself to acquire a knowledge of the new duties connected with writing the village khasras, and for the manner in which he has instructed his establishment in the new work required of them.*
XVIII-DISTRICTS GHAZIPUR, BALLIA, AND BENARES, NORTH-WEST PROVINCES (No. 4 PARTY, REVENUE BRANCH).
129. The field operations of this party were resumed under control of Major

Personnel.
Dinjor W. Darron, Deputy Superintendent, Brd grade, in chnrge.
Mr. W. A. Wilson, Surveyor, Mrd grade.

- H. T. Hanby \quad U 4th "
S. O. Mndros, Assistinnt Surveyor, 1st grade
"S. C. Mindras, Aesistint Surveyor, 1st grnde
transferred to No. 5 party with eflect from 1st October 1881.
Mr. E. 13. M. Drew, Agsistant Surveyor, 3rd grade. L F. Berkeley
30 sub-surveyors and others.
Temporary Establishment.
200 field surveyors and others. Barron on 25th October 1881, and were continued up to 10 th April 1882. During the season the cadastral survey of district Ghazipur has been completed, and that of district Ballia continued. The scale of cadastral survey has been 16 inches to a mile, except in the case of a few villages in Ballia, where the scale was increased to 32 inches to a mile on account of the very small size of the fields.

130. The party has also been engaged on the survey, on the 4 -inch scale, of a line of villages in district Shahabad of Bengal, on the banks of the Ganges, opposite to district Ghazipur. This work has been undertaken, on account of the Government of Bengal having determined to take adrantage of the cadastral survey progressing along the Ganges and Gogra rivers, to have a line of river villages in districts Shahabad and Sarun surveyed simultaneously, so that the entire breadth of low-lying country, over which the above rivers are liable to flow, may be represented with full details of the boundaries of villages and estates in one series of maps for both provinces. A survey of this nature for all large rivers was sanctioned by the Government of India, Revenue and Agricultural Department, by letter No. 103, dated 3rd September 1881, to the Surveyor-General.
131. The separate areas surveyed in the different districts and on the different scales are shown in the following statement:-

An overlap of 12.50 square miles has been surveyed in district Azamgarh on the 2 -inch scale. In the cadastral area, $9,88,157$ ficlds have been surveyed, having an average area of 41 of an acre. Preparatory traverse work has been extended over 162 square miles in the Ballia district, and the Benares district having been assigned to the party for cadastral survey, under authority of Government, North-Western Provinces and Oudh, conveyed in letter No. 93, dated 20th January 1882, preparatory traversing has been carried out in that district extending over 179 square miles.
132. In the cadastral survoy, the system of plotting the field measurements directly on the skeleton maps of the traverses, without recording the measurements in field books, continues to work most advantageously. The work is done more rapidly than urder the former system of keeping field books, and the same standard of accuracy is maintained. The usual checks and tests have been carried out, both by inspections of the work in progress and by subsequent

[^16]comparisons of measured test lines. Of the latter, 567 linear miles were measured by the European staff, and 1,186 miles by Native inspectors.
133. The permanent marking of theodolite stations has been carefully attended to. At every station-there are $11,39 \mathrm{~s}$ in the season's work-a pottery cylinder has been imbedded, at an average cost of 3 annas 7 pie per station. These marks are in addition to the stone marks which are placed at the trijunctions of village boundaries under the authority of settlement officers and at the expense of land-owners. Connections have been made with five stations of the Great Trigonometrical Survey, and the chain measurements of the traverses have been adjusted to agree with trigonometrical distances. The average error of the chaining was found to be 2.7 .3 feet per mile. Azimuth observations were taken at 50 traverse stations, at an average distance of six miles apart.
134. The area surveyed cadastrally has been mapped on 1,323 sheets, of which, on 1st October, 977 sheets had been sent to Calcutta to be printed. There are nine standard-sized sheets of the 4 -inch survey of the Ganges river villages in district Shahabad, on which a line of villages on the Ghazipur side of the river has been introduced by reduction from the cadastral maps, so as to represent the entire low-lying area in one projection. The general maps on the 2-inch scale of Ghazipur and Ballia are under preparation, nine having been finally completed and 20 partially drawn. On these sheets, the survey of parganas Bhadaon and Sikandarpur (now of Ballia, but fornerly of district Azangarh, and cadastrally surveyed in 1874-76), is being introduced, so that the map of district Ballia may be complete. A reduction of the maps of district Ghazipur to the scale of the Atlas of India bas nearly been finished.
135. It is expected that the party will e mplete the survey of district Ballia and of the riverain villages on the Ganges and Gogra during 1882-83. District Benares will occupy season $1882-83$ and part of season 1883-84, and a new district will be required to be allotted to give sufficient work to the party for the latter season.
136. The recess office of the party was inspected by the Deputy SurveyorGeneral at Naini Tal during October. The work of the party in all its branches was found to be highiy satisfactory, reflecting great credit on Major Barron's skill and close supervision.*

XIX.-HANTHAWADDY DISTRICT, BRITISH BURMA, and ARAKAN WASTE LAND GRANTS (No. 2 PaRTY, REVENUE BRANCH).

137. This party has been under the charge of Major J. R. McCullagh,

Personnel.

Major J. R. McCullingh, R.E., Deputy Superinteudent, 4th grade.
Mr. E. J. Jackson, Aasiatant Superintendent, 1st grade, returned from furlough and transferred to No. 2 party on the forenoon of 5th December 1881.

Mr. F. Grant,
Surveyor, 2nd grade.
D. A. King, Officinting
" 4th "
\because J. McHatton, Assistant ", lat "
", G.E. Parker " " 2nd "
"J. Murphy ", " 2nd "
" B. M. Wileon " ", 2nd
32 sab-surveyors and others.
Temporary Establishment.
135 field sarveyors and others.

Leveling,

Mr. Fredrio Rencontre, leveler, transferred to profesgional native establishment of No. 2 party from 1st Norember 1881.
Mr. Alexnnder Munro entertained as leveler from 1st Norcmber 1881.
Bir. Frank liencontro entertained as leveler from 1at November 1881.
R.E., throughout the season.

Small field parties were employed in the Rangoon town district during October and November 1881, and the cadastral field work was resumed in the Hanthawaddy district on the arrival of the field establishments from India during the early part of December. Field operations were continued up to the end of May.
138. The cadastral survey has chiefly been carried on in the Pegu and Hmawbee townships. In Angyee township the contouring of a small area of high land, remaining over from last season, has now been completed; and the field work of the cadastral survey of the Rangoon town district has been finished. Adjoining the Pegu township, a tract of country along

[^17]
the sea-coast, devoid of cultivation and covered with kain grass and jungle, has been surveyed topographically on the 2 -inch scale. A commencement has been made on the survey of the forest reserves in Hanthawaddy. The several areas are shown in the following statement:-

In addition to the above, preparatory boundary traversing for the cadastral survey of next season has been done over an area of 458 square miles in the Pegu and Hmawbee townships, and 42 square miles of forest reserves have also been traversed in preparation for next season's survey.
139. A small sub-party of field surveyors under an assistant surveyor is now regularly organized as a section of this establishment set apart for the duty of carrying out the revisions of the naps of the previous season, so as to bring them into accord with the settlement papers, which are prepared one year subsequent to survey. During the season 719 square miles were brought under settlement, and the revisions were completed over the whole area, the work (which involves frequent references between the two departments) having been greatly facilitated by an arrangement for locating the Assistant Surveyor in the Settlement Officer's camp. On the subject of the revisions, Major McCullagh reports:-
" Revisions are due to the following causes :-
" 1 st.-Errors of survey; that is, faulty measurements or incorrect inking up.
" $2 n d$.-Changes in the boundaries of fields and kwins.
" $3 r d$.-Imperlect or indistinct demarcation, especially of garden lends.
" $4 t h$.-Extensions of cultivation.
"I have endeavoured to ascertain the percentage under each of the above hends, but unfortuuately tho rolls kept up have not ennbled me to do so very accurately. The percentage of errata is calculated on the number of fields, and does not in any way represent aren. It has been found to vary very considerably in different circles ; the maximum being 30 per cent in Tawkoo, and the minimum 6 per cent in Kyouk Choung. The average for the 11 circles is 15 per cent; and of this I think it may be approximately taken that the figures $1,5,5$, and 4 represent respeotively the proportion of fields revised under the four different bendings. The actual area of the cultivation opened out between the time of survey and settlement (extensions) amounts to 11,881 acres, or $18 \frac{1}{2}$ square miles."
140. The greater part of the area cadastrally surveyed in the Pegu townahip consists of an open cultivated plain requiring no particular description; but it included a strip of high-land (kondan) in which the cultivation and garden lands were difficult and tedious to survey, and a belt of country on the western margin, where unusually small fields, averaging about 7 to the acre, were met with. In the Hmawbee township, the greater part of the area likewise consisted of open country, chiefly under rice cultivation; but a very considerable extent of kondan was surveyed, where (to quote from Major McCullagh's report) the-
"ground is much broken and undulating, and for the most part covered with valuable gardens. The general appearanoe is that of heavy forest until examined more closely, when the trees are found to be fruit-bearing, with donse garden cultivation underveath. The boundaries of the gardens are very irregular, and have to be mensured right round. Where rice cultivation extends up into the kondan, the fields are also irregular and very small."
141. The permanent demarcation of kwin boundaries has been effected by the survey establishment in the usual manner, by means of pottery cylinders imbedded at the theodolite stations. As a rule, the cylinders are not more than half a mile apart, but in many places, where the boundaries are irregular, they are much closer; pottery cylinders are also imbedded at certain selected stations in the interior of kwins.
142. The field survey has been carefully tested by check lines, amounting in the aggregate to 499 lincar miles, measured by the Europoan officers and by
the Native inspectors. All the stations of the Great Trigonometrical Survey lying within the area under survey have been connected with the traverses, and the direct trigonometrical distances have been used to correct the errors of the chain measurements. The angular work of the traverses has been checked by observations for azimuth at 36 stations. The number of fields surveyed is $5,09,763$, showing a large increase on the number of former seasons, and giving a diminution of the average size of the field from $1 \cdot 4$ acres of last year to 93 acre for the present season.
143. A large number of Burmans have been employed in different situations, but it has been found extremely difficult to keep up anything like a fixed establishment of Burmans, owing to the constant drain on the party for men to fill other situations.

Major McCullagh says of the Burmans:-

Abstract

"A few of the field survejors have done remarkably well, but on the whole they hnve not come up to my expeotation, and there are many of them deoidedly indifferent. My predecessor, Major Sandeman, bestowed such unqualified praise on the Burmens in their capacity as surveyors, that I may have been led to expeot too muoh; but oertainly my short experience tends to a conclnsion much less favourable than his. The Burmans have some good qualities; they are quick, cheerful, and willing at learning, and, when under supervision, are fairly industrious and painstaking; but they heve little idee of submission to discipline, and are wanting in habits of method and order: and let the eye of authority be taken off them, they are up to quite as many tricks, and just as much scheming, as any other race I am aequainted with. It appears to me, of oourse with some exceptions, that it is with them a case of time servioe. They have no love for the work, and take no real interest in it as a means of earning a livelihood or of gaining a name. The surver is a stepping stone to something else; and as long as they oan do enough to qualifiy for a certificate, the aim and object of their service is satisfied. I am fully aware how much importance is attached to the polioy of training Burmans in the profession of surveying, and I have endenvoured to carry out the views of Government to the utmost of my ability; but I must confess to feelings of disappointment, after all the care and attention bestowed, the large sums expended, and the many induoements held out to really deserving men, that the results are not more satisfootory."

144. 'The 16 -inch sheets, 1,007 in number, of the area where the settlement and revision survey operated, were all sent to Calcutta to be photozincographed between 14th March and 21st July, after the revisions were entered. Pbotozincograph copies have been supplied to the district authorities.
145. The drawing of 860 new cadastral sheets surveyed during the season has been completed, and manuscript tracings have been given for the ensuing season's settlement operations. Of the general maps of the Hanthawaddy district, four sheets in 11 sections, comprising country surveyed cadastraliy during previous seasons, have been completed and photozincographed. Several others are partially drawn, and the drawing is being continued as photozincographs of the cadastral sheets are available for reduction.
146. 'The detachwent of this party which had been employed, during season 1850-81, in the Akyab district, surveying the boundaries of waste land grants, returned to Arakan in November 1881 for the purpose of carrying on the boundary survey of the remaining grants. Mr. H. Dowman was again sent in charge, and was furnished with an establishment partly from India and partly from Burma. The grauts for survey lay in three districts, viz -

				Grants.
Akyab	\ldots	\ldots	\ldots	$\mathbf{1}$
Kyouk-Phyoo	\cdots	\cdots	\cdots	$\mathbf{7}$
Sandoway	\cdots	\cdots	\cdots	$\mathbf{2}$
		Total	\cdots	10

On the completion of the survey of these in February 1882, Mr. Dowman was prepared to take up the adjustment of the boundaries of such of the grants surveyed during the previous season as might have been found on settlement investigation to have excessive areas; but the settlement investigations had not been carried out (an officer not having been available for the duty), and it was deternined to employ tho detachment during the remainder of the season, in rendering the existing demarcation more permanent than at first provided. This sccond demarcation was taken up too late in the year to allow of all the grants being done, and 54 only had been completed when the setting in of the

rains put a stop to the work. Before the detachment left Akyab, Mr. T. C. Mitchell, Settlement Officer, arrived there and commenced his investigations regarding the areas held by the grantees. Consequent on these investigations, the boundaries can now be made final, and the detachment under Mr. Dowman will return to Arakan next season to aid in the permanent demarcation.
147. The British Burma Government maintains a survey school at Rangoon in connection with the survey party, over which Major McCullagh has exercised a general superintendence.

Two squads of levelers are attached to the party, whose work is reported on with the other leveling operations of the department. See page 56.
148. The office of the party at Rangoon, and one of the field camps in the Hanthawaddy district, were inspected during April by the Deputy Surveyor General, who reports very highly on the style of the work which was being executed and of Major McCullagh's excellent management of his establishment.*

XX.-BASSEIN DISTRICT, BRITISH BURMA (No. 8 PARTY, REVENUE BRANCH).

149. Major W. H. Wilkins received charge of this party at Rangoon on

Personnel.

Major E. B. Steel, Assistant Superintendent, 1st grade, in charge up to $24 t h$ November 1881.
Major W. H. Wilking. Deputy Superintendeat, 3rd grade, in clarge from forenoon of 25 th November 1881.
Mr. H. 1R. Littlewood, Surveyor, 3rd grude.
"J. H. O'Donel ", 4th ", transferred to Deputy Sur. veyor.General's office from 1st April 1882.
Mr. R. B. Smart, Assistant Surveyor, list grade, Iransferred from No. 5 party from lat November 1881.
Mr. T. H. Dunne, Δ ssistant Survegor, 1st grade.
" E. J. Martin " \quad " lst \quad transferred from No. 6 party from 1st October 1881, transferred to No. 7 party from lst November 1881.
Mr. W. H. Peurose, Assistnnt Surveyor, 2nd grade, transferred from No. 11 party from $16 t$ November 1881.
Mr, G. Camplell, Assistant Surveyor, 2ad arade, rejoined from furlough and transferred to No. 1 party, Hibsar District Survey, from afternoon of 21st September 1882.
Mr. C. W. J. Ford, Assistant Surveyor, 2nd grade.
W. H. D. Ewing " ", 3rd "
$2 \ddot{\theta}$ sub-surveyors nod others.
Temporary Establishmont.
170 field aurveyors and others.
the 25th November 1881 from Major E. H. Steel, on the departure of the latter officer on medical leave to Europe. The office establishment of the party, which had recessed at Rangoon, proceeded to Bassein during the first week in December, on the arrival of the field establishments from India, and cadastral operations were resumed in the Bassein district on the 10th December. The party remained in the field until the 27th May 1882, and then returned to recess quarters in Rangoon.
150. The survey has been done entirely on the 16 -inch scale, and the completed area is shown in the following statement, viz.-

In addition to the alove, boundary traversing has been done over an area of 350 square miles in preparation for cadastral survey next season. The number of fields in the cadastral area is $3,49,790$, of andaverage size of 44 acre calculated on the cultivated area, and of an average size of 1.49 acres calculated on total area.

[^18]151. The tract surveyed includes a very large area of waste land mised up with the cultivation, as has been the case with the tracts previously brought under cadastral survey in Bnssein, the separate areas for the present season being 240 square miles of cultivation and 573 square miles of waste. Major Steel, who held charge of the party during the previous season, gave much attention to the question of the survey of these large waste areas, in view of the fact that the survey of waste land brings no direct profit to Government; and, with the object of reducing expense, he proposed to the Chief Commissioner that the survey of the waste land should be done on the 2 -inch scale. separately from the cultivation. The scheme being approved of by the Chief Commissioner, Major Wilkins introduced the system of separate surveys on the different scales of 16 inches and 2 inches at the commencement of the field season; but he did not maintain it for long, as, on account of the cultivation permeating through all parts of the waste, he found in practice that a complete survey, done in one operation on the large scale and mappod on one series of sheets, was more expeditious than the proposed system of omitting the details of the waste from the large scale survey, to be done in a subsequent operation on another series of sheets.
152. The revision survey in the area surveyed during the previous season, to bring the maps in accord with the settlement papers, was a very laborious undertaking, and added largely to the work of the party, one assistant surveyor and about one-fifth of the entire establishment of field surveyors having been exclusively employed on the revisions throughout the field season. The work included the determination of the boundaries of 908 parcels of pottah lands, situated, in many instances, in the heart of the jungle, the existence of which was brought to light during settlement investigations.
153. The preliminary and temporary demarcation of kwin boundaries has, as usual, been done in advance of the survey by the district authorities, and the permanent demarcation by the survey party. For permanent marks, the pottery cylinders of the previous year have again been used ; these Lave been imbedded at two out of three theodolite stations on the kwin boundaries, and, for use as reference marks when extensions in the cultivation have to be mapped, at many stations in the interior of the kwin lands. About one-fourth of the field surveyors of the establishment employed last year were Burmans. It is not advisable to employ Burmans in a large proportion, as the work of these men is slow-they do less than a third of the average monthly outturn of the Hindustanis-and consequently costly. Major Wilkins has taken great interest in the Burmans of his establishment, recognising the great importance of the professional survey leaving in the district a school of trained surveyors; but he expresses disappointment in his experience of these men after what he had been led to expect of them, and he states that the praise bestowed on the Burmans in last year's report cannot be given this ycar.

Major Wilkins also writes:-

[^19]154. A survey school in connection with the party has been kept up by the Educational Dcpartment in the town of Bussein, over which Major Wilkins bas exercised a general supervision.

Major Wilkins reports that he and the European officers of the party constantly visited the field surveyors while they were working in the field, to see that they were surveying on correct principles. Check surveys, aggregating 909 linear miles, were also carried out in the most rigorous manner. Olservations for azimuth to check the angular work of the traverses were takon at 64 traverse stations.

No. 7 REV. PABTY.

Photorincographed, at the Sarvevoe. Generald Offlice, Calezith.

Stemener Germonils Offion Cideutia, Jamuary.
155. The 16 -inch shects, 1,031 in number, on which the season's outturn has been mapped, have been drawn, and tracings have been supplied for the use of the Settlement. Officer. The sheets of the previous season's area, where the settlement operations were conducted, have been completed in accordance with settlement investigations, and all were forwarded to Calcutta to be printed in time for the supplementary survey of the succeeding season. The general maps on the 2 -inch scale are in progress.
156. The Deputy Surveyor-General visited the Bassein district during April, and inspected the camp offices of the party, besides examining some of the cadastral plans in the field. He expresses himself as having been well satisfied with the control exercised by Major Wilkins over all branches of his large establishment, and with the style of work which was being executed.*

XXI.-THARAWADDY DISTRICT, BRITISH BURMA (No. 7 PARTY, REVENUE BRANCH).

157. This party, under charge of Mr. H. B. Talbot, resumed cadastral operations in the Tharawaddy dis-

Personnel.

Mr. H. B. Talbot, Assistant Superintedent, 1st grade, in charge.
" W. R Vynll, Surveyor, ith grade.
" G. W. Jurbo, Assiatant Surveyor, lat grade.
"J. R.Scott " " lat n
"J.S.Swiney " " lst " traneferred from "No. 6 party with effect from "1st April 1882 '.
Mr. E. J. Martin, Agsistant Surveyor, lat grade, transferred from No. 8 party from 1st November 1881, and on furlough from lat April 1882.
Mr. A. W. Smart, Assistant Surveyor, 2nd grade.
D. J. collins, " " 3rd " transferred from "the Darjee ing topographicul' party from lat November 1881. 30 sub-surveyors and others.

Temporary Establishment.
165 field surveyors and others. trict on the arrival of the field establishmenfs from India towards the end of November. Field work was continued until nearly the end of May, when the party returned to recess quarters in Rangoon.
158. Besides the regular cadastral survey on the 16 -inch scale, the party has surveyed, on the 2 -inch scale, extensive tracts of waste land in the Irrawaddy Valley along the Myitmakha river, and has commenced the survey on the 4 -inch scale, for the Forest Department, of the forest reserves of the Tharawaddy district, situated in the hilly tracts of the Pegu Yoma range.
159. The areas accomplished on the sereral scales are shown in the following statement:-

Townetip.					On 10-inch scale. Square niiles.	On 2-inch acale. Squary iniles.	On 4-inch geale. Square miles.
Minhla Gyobingouk Tapoon Thonzeh	...	\ldots	':	...	212		
	\cdots	\ldots	\ldots	\ldots	229	\} 107	
	85	
	\ldots	...	\cdots		42
			Total	...	526	107	42

In addition to the above, preparatory boundary traversing has been done over an aren of 276 square miles, parily in the Tharawaddy district and partly in the Prome district. An area of 25 square miles in the forest reserves of Tharawaddy has also been traversed in advance.
160. The survey of changes and extensions of cultivation in the area surveyed during the previous year and brought under settlewent during the current year has also been carried out, involving, as reported by Mr. Talbot, very heavy work both in the field and in uffice. In the tract surveyed on the

[^20]16 -inch scale a large amount of waste land has been found to be mixed up with the cultivation, the separate areas being 287 square miles of waste and 239 square miles of cultivation in the total area of 526 square miles. The number of fields in the cultivated area is $4,95,000$, giving $\cdot 30$ acre as the actual average size of each field calculated on the cultivated area, and -68 acre as the average size if calculated on the total area.
161. 'The permanent demarcation of kwin boundaries has been carried out by the survey party, the marks adopted being pottery cylinders imbedded at theodolite stations, the same as in the previous year. For the purposes of the supplementary survey, which will be carried on year by year to map the extensions of cultivation, marks have also been placed at stations in the interior of the kwins as well as on the boundaries. In the forest reserves, the theodolite stations have been marked by posts and mounds of earth, zinc numbers in Burmese characters being nailed to the posts.
162. The survey of the forest reserves has been undertaken in accordance with the wish of the Chief Commissioner, expressed in his Secretary's letter No. 406-9, dated 13th October 1881, to the Surveyor-General. The nature of the country presented many difficulties to the surveyors, the difficulties being increased by the position of the reserves, which are situated in an almost uninbabited country, far removed from the cultivated part of the Tharawaddy dietrict. Supplies had to be sent from a distance; and in the reserves, special arrangements had to be made for carrying water for the use of the survey squads. Sickness also was very prevalent; generally 20 per cent. of the men were unfit for work, and very often 30 per cent. The reserved tract consists of an intricate mass of hills, with many minute features, and closely jungle clad, where a ray had to be cleared for every line that was measured. A few descriptive notes furnished by Mr. G. W. Jarbo, Assistant Surveyor, who was directly employed on the survey of the tract, are printed at page 31 of the appendix.
163. Mr. Talbot reports as follows on the Burmans of his field establish-ment:-
"The work of the Burman field surveyors was generally found correct, and they certainly hold their own against the Hiadustani surveyors as far as accuracy is concerned; but they are lamentably slow, and require far greater supervision. The 35 Burman field surveyors mployed duriag the whole of the field season gave less than balf the daily everage of work performed by Hindustani surveyors, viz. -

			Aeres per day.		
Burmans	\ldots	\ldots	\ldots	12	
Hindustanis	\ldots	\ldots	\ldots	28	

which was a loss of 480 acres per man per month, or 144 square miles in the senson's outturn."

At the request of the Chief Commissioner, six Burman apprentices were attached to the topographers employed on the survey of the forest reserves for instruction in topographical surveying. These men could only be induced to join by the offer of high subsistence allowances; and the experiment of training them has not been very satisfactory, as, it is said, the men will not take employment as forest surveyors, which was the object of their being instructed. The work of the field surveyors was carefully tested by the measurement of 1,010 linear miles of check lines carried out by the European officers and by Native inspectors. The European officers also frequently inspected the field survey work during its progress. The traverscs have been connected with seven stations of the Great Trigonometrical Survey, and the trigonometrical distances have been used to correct the errors in the chain measurements. Observations for azimuth havo been taken at 61 traverse stations.
164. The present season's out-turn of 16 -inch survey has been mapped on 660 sheets, of which tracings have been furnished for the uso of the settlemont officer in his operations of next season. The shects of the previous season have been finally completed after entering the rovisions and extensions, and they were sent to Calcutta to be printed in time for the settloment operations of the following seasou.
165. The office of the party in camp in the Tharawaddy district was inspected during April by the Deputy Surveyor-General, who expresses himself as having been well satisfied with the careful supervision exercised by Mr. Talbot over his large establisliment.*

XXII.-SYLHET TEST SURVEY.

166. This survey bas been carried out under the instructions of the Government of India, Home, Revenue, and Agricultural Department, conveyed in the Officiating Secretary's letter No. 445, dated 18th December 1880, to the Surveyor-General, for the purpose of testing the mahalvar maps of the Sylhet district, which were prepared by a local survey establishment during years 1862 to 1864 .
167. The detachment of surveyors and others required for the limited

Personnel.

Mr. I. A. G. Cowloy, Surveyor, 2nd grade, in charge from lst November 1881 to 25 th June 1882.

4 sub-surveyors and others.
Temporary Establishment.
17 field surveyors and others. area to bo surveyed was furnished by No. 6 party of the Revenue Branch, and Mr. P. A. G. Cowley, Surveyor, 2nd grade, of the same party, was placed in immediate charge of the detachment. The field establishment assembled at Barrackpore on the 1st November 1881, and the detachment was finally broken up at the same station on the 25th June 1882, after completion of the mapping and area calculations. The actual field work in Sylhet was carried on between 23rd December 1881 and 23rd April 1882.
168. Before commencing the operations, it was necessary to decide on the amount of survey work which should be done in connection with the testing. A mere testing of what is shown on the mahalwar maps would have been effected by resurveging only the boundaries of mahals, besides which no other divisions subordinate to villages were dealt with by the mahalwar survey; but a mahalwar survey, where the mahals are large, is a work of a very partial cbaracter, and wanting in information regarding many minor tenures. Therefore it was deemed to be advisable that the present operations should not be restricted to the mere skeletons of malals (more specially as the surveyors who were being sent to Sylhet were well competent to carry out a much more comprehensive work, having been previously employed on cadastral surveys in the North-Western Provinces); and in consultation with the Chiof Commissioner of Assam it was decided that the testing operations should take the form of a complete cadastral survey of fields, with which the boundaries of mahals would also be defined in a distinguishing manner. It was also decided that the operations should be confincd to three blocks of villages in different parts of the Sylhet district. The particulars of the blocks (which were selected by the Deputy Commissioner of the district) are given in the following statement:-

	Sob-divieios.			Number of rillages.	Area in square miles.	Reyarifa.
Karimganj Habiganj Sedr	.'....	14	$9 \cdot 06$	
		20	$8 \cdot 30$	
		\ldots	.	16	$8 \cdot 40$	
		Total	\cdots	50	25.76	

At the request of the Chief Commissioner, the surveyors were required to prepare, simultaneously with the survey, village registers (khasras), particularising (1) name of mahal, (2) owner of mahal, (3) name of cultivator of field, (4) uature of crop.

[^21]169. Before stating the results of the testing operations, a few remarks are desirable on the character of the maps which had to be tested. The malalwar survey of Sylhet was done entirely by magnetic bearings, on a system adopted for all the districts of Lower Bengal after the old system of sketching without instruments had been abandoned. The first part of the operation was the survey of the village boundary-the thakbust-done by taking bearings at each successive bend of the boundary to the forward bend, and measuring the distances between the bends. The map was then projected by laying off the magnetic bearings at each successive distance. On completing the projection, it would generally happen, when the village was large, that the polygon would not close, and an adjustment had to be made by distributing the error all round the boundary. The mahals were then surveyed, working inwards from all sides of the boundary, by taking the bearings and measuring the lengths of the sides and diagonals, and adding the plot of each mahal to the one adjoining it. A frequent occurrence during the plotting of the mahals was that the plots from the different sides of the village would overlap, and an adjustment had to be made by contracting the areas of some of the mahals, or it might happen that the plots of mahals actually touching one another would not meet. These would generally be left as plotted, thus unduly expanding the size of other mahals. The general character of mahalwar maps prepared in the manner described is that the plots of the mahals situated on the boundaries of villages, and those to a certain distance towards the centre, are usually correct; but when the plotting from the different sides has met, the dimensions and shapes of mahals are usually inaccurate, and the relative positions are, as a rule, much vitiated.
170. The cadastral maps of the villages selected for resurvey have been plotted on the same scale as the mahalwar maps- 16 inches to a mile. This has enabled the testing of the mahalwar maps to be done by direct comparison, tracings of these maps on vellum cloth being superimposed over the maps of the present survey, and the differences or coincidences noted. It is evident from the comparisons which have thus been made that a large amount of careful and laborious work was done during the mahalwar survey; and great n'mbers of mahals, very many of small size, are found to have been accurately measured, as is shown by the excellent agreement of numerous mahals in all the villages tested. But the agreement is for the most part only true when the superimposed tracings are shifted, so as to make single plots coincide; and there is found, mixed up. with a great deal of good work, a very large amount of mapping which is most inaccurate,-so much that the survey cannot be considered to be otherwiso than quite unreliable, and the errors being of such a character that there would be very great danger of the maps being most misleading if they were to be accepted as the final authoritative records of the positions or areas of properties. The differences between the present and former maps, which have hitherto been referred to, are those arising from faulty surrey; but besides these, there are numerous differences, due to the changes in the boundaries of mahals, and occurring both by the amalgamation as well as by the subdivision of the mahals as these are shown on the former maps.
171. The areas of fields-and by summation the areas of mahals -have been calculated from the present cadastral maps, and comparisons have been made with the arcas of the old mahalwar registers, with results similar in character to those obtained on comparing the two sets of maps. Where the mahalwar survey is accurate, the areas have been rightly calculated, and the agreement is excellent in a large number of cases; but there are also numerous and great discrepancies. Very many of the discrepancios in the areas are, however, due to the changes in the boundaries. One point which deserves to be prominently brought forward, as having been fully established by the present testing operations, is the unsuitability of the system of survey on which tho mohalwar maps were constructed to deal with large village areas enclosing numerous subordinate plots. 'To secure a map on which all properties will be represented in their true positions and with correct dimensions, an accurate frame-work obtained by thedolite traversing must bo provided.
172. There are 61 sheets of the cadastral survey of the tested villages; of these, 16 sheets have been photozincographed and copies furnished to the local Government of Λ ssam, by whom the final report on the results of the
testing will be submitted to the Government of India. Cumparative statements of mahal areas, according to present and former surveys, have also been furnished to the local Government.*

XXIII.-SURVEXS IN THE DARJEELING DISTRICT.

173. The existing map of the hill tracts of the Darjeeling district,

Personnel.

Captain H. J. Muriman, Assistant Superintendelut, lat erade, in charge.
E.C. Hyall, Esq., Offg. Assistant Superintendent, 1st grade.
Mr. J. A. May, Surveyor. 3rd grade (for portion of field senson).
Mr. W. J. O'Sullivan
"W. Robert, Survejor, 4th grade.
"W.C G. Barckley " ", 2od ",
(for recess only).
Sub Surveyor Sulai Din.
Bhowni.
Mulwimed Klinn. lying west of the Teesta river, is mainly based on a survey which was executed during $1865-67$ by a Revenue survey party under Mr. Johnson. This party had been previously employed solely in the plains, and it had no experience of bill topography. But at that time a survey of the boundaries of Government lands and of private estates, tea plantations and 'locations,' was urgently demanded by the local authorities for purposes of administration, and with a view to the future allotment of grants of waste lands. The party had had much experience of boundary survey work in the plains, and were well skilled in its performance, whereas, on the other hand, the topographical survey parties, which were well skilled in hill sketching, were nct organised to undertake a large amount of boundary survey work in addition to topography. Thus the choice of the party devolved on the one which was best adapted to satisfy the immediate requirements of the local authorities.
174. As the boundary survey progressed, the principal roads and watercourses were traversed, and some attempt was made to sketch in the hill features broadly ; but exact iopography was unattainable with the existing agency, and was not attempted. The maps thus prepared were considered sufficient until latterly, when the operations of Captain Harman's party in surveying new boundary lines and relaying old ones, of which the original marks had disappeared, brought to light the necessity fur the revision of the hill topography throughout, and for the rectification of some of the traverses, which having been carried over mountain slopes and precipices, and very difficult ground generally, and being unchecked by triangulation, were fonnd to be erroneous.
175. These circumstances were brought prominently to the notice of the Bengal Government at Darjeeling by Major Hutchinson while residing there, when acting for Captain Harman during the recess of 1881. Consequently a requisition was made fur the survey of the whole of the Hill Tracts west of the Teesta river to be revised as speedily as possible. Already a large amount of triangulation had been executed in connection with the recent operations under Captain Harman; this was extended to cover the whole of the area for revision; the old traverses were connceted with, and adjusted on the trigononietrical points, and much of the detail of roads and water-courses of the first survey was found to fit in well with the new work. The hill sketching, however, had to be entirely revised. The 2 -inch scale, which had been adopted for the first survey, was retained for the second. The total area for revision was about 450 miles.
176. During the field season all the requisite additional triangulation was completed by Mr. O'Sullivan; a considerable length of road was traversed with chain and compass by native surveyors, plotted on a large scale, and then
 completed. What remains for completed in the next field scason
177. At the commencement of the field season Captain Harman bravely endeavoured to reach the neighbourhood of the Kanchinjinge mountain, to complete a portion of the survey of Sikkim, notwithstanding that he bad not by

[^22]any means recovered from the disastrous effects of his previous excursions to the snowy regions on the borders of Tibet But his health again failed him, and after a few weeks' struggle onwards he had to abandon the attempt and return from Sikkim, occupying himself for the remainder of the field season in the lower hill tracts around Darjeeling.
178. The prosecution of the survey of Sikkim with the adjuining portions of Nepal and Tibet has thus devolved almost wholly on Mr. Robert, who completed 180 square miles of East Sikkim, and in addition was able to survey and sketch with varying degrees of accuracy, on the $\frac{1}{2}$-inch scale, upwards of 720 square miles of Nepal and 690 of Tibet.
179. During the recess the party was very fully occupied in completing the fair maps of the previous field season's work Of those sent into the Survegor-General's office, the principal are-(1) Hill territory, British Sikkim in 4 sheets, scale 2 inches equal to 1 mile; (2) Terai Pergunnahs in 4 sheets, scalo 2 inches equal to 1 mile; (3) Jotes in the Terai Pergunnahs in 9 sheets; scale 4 inches equal to 1 mile. Captain Harman has also sent in a most carefully executed panoramic profile of the great ranges of Sikkim, the point of sight being the observatory hill at Darjeeling. It is drawn to scale for horizontal and vertical distances: thus the bearings and elevations of the different peaks are shown. A table of distances of the principal points is also entered on the sheet. This panorama has been reproduced by photozincography for publication at the Surveyor-Gencral's office, and it is in much demand by visitors to Darjeeling. Captain Harman has discovered that the mountain which is always pointed out from the neighbourhood of Darjeeling as Mount Everest is not that mountain, the true Mount Everest being that immediately to the left (or south) of the peak which generally passes for it.
180. Though repeatedly warned by his medical advisers to cease from working and take leave of absence for the benefit of his health, Captain Harman retained the charge of his party until the close of the recess, and then handed it over to Lieutenant-Colonel Tanner on the return of that officer from furlough. In the coming field season Colonel Tanner will supervise the completion of the revisionary operations in the Darjeeling Hill T'racts. But he will be principally emploged in survey operations on the Nepal boundary for the purpose of carrying out a proposal made by the Resident in Nepal, and approved by the Government of Bengal, that the portion of the boundary between British and Nepal territory from Bikna Thori in Cbamparun to the point on the Kusi river in Bhagulpore where the survey of 1875 under Captain Samuels ended, should be resurveyed, and the boundary pillars and posts renumbered. While thus employed, Colonel Tanner will endeavour to fix, by triangulation, all the most prominent hill peaks in Nepal between the British frontier and the great snowy ranges. The chief peaks of the latter were long ago fixed by triangulation, but as yet this has not been done for the points on the lower ranges, and it is very necessary with a view to furnishing a satis. factory basis for constructing a better map of Nepal.

XXIV.-THE BURMA-MANIPUR BOUNDARY.

181. As mentioned in the report for last seasun, Major W. F. Badgley was

Personnel.

Mnjor W. F. Bndgley, S.C., Depaty Superiatendent, 3rd grade, in cbarge.
Mr. M. J. Ogle, Surveyor, 4 th grade. deputed to the survey of part of the BurmaManipur boundary. the demarcation of which was being undertaken by the Political Agent and Boundary Commissioner, Colonel Johnstone.
182. Accompanied by Mr. Ogle, Major Badgley left Shillong on the 4th November, and after a tedinus march through the hills and a delay of a week at Cachar owing to the difficulty of procuring coolies, reached Manipur on the 27 th November. From this point Major Badgley carricd forward a survey eastwards in the divection of Kungal thana, where Colunel Johnstone had established his camp, the triangulation and topography being carriad on pari passu, as is necessary in such work.
183. After an unsuccessful attempt to open negotiations with the Burmese, Colonel Johnstone determined to send his Assistant Commissioner to Samjok

to see the Rajah. Major Badgley accompanied Mr. Phayre on the expedition to this littlo-known spot-the easternmost point yet reached in the course of the survey operations-which is situated on the Kyendwen river, within the borders of Western Burna. His interesting description of the trip will be found in the appendix to this report. The boundary demarcation being completed by the 5th January, Major Badgley took adrantage of his return journey to complete as much as possible of the survey of the Manipar territory. The ground sketched is a tract some 30 miles wide, extending roughly along the meridian of $94^{\circ} 30^{\prime}$ E, and lying between the parallels of 24° and $25^{\circ} 30^{\prime}$.

XXV.-NORTHERN AFGHANISTAN.

184. No actual survey work was executed in this region during the current year, but considerable progress has been made with the final mapping of the surveys which were executed during the late war, and which have been described in the Annual Reports for 1878-81. Urgent calls for maps have been met hitherto by preliminary compilations. It still remained, however, to put all the geographical information which had been obtained bejond the British frontier into a form for final record, applying such corrections and adjustments as were required to harmonize the whole, and to bring it into accord with the many points now well fixed by triangulation, and, finally, to redraw all the maps, for as yet the fair copies had not in any instance been made. This work has been entrusted to Major Holdich and his party, who are thoroughly familiar with the country; and it has formed their chief occupation during the recess of the surrent year
185. The maps will be published in two series-firstly, a set of maps published on the same scale as that on which the surveys were originally executed. This will comprise a map of the country immediately round Kabul, on the scale of 4 inches to a mile, and maps on the 1 -iuch and $\frac{1}{2}$-inch scales of such parts of Northern Afghanistan as were actually surveyed Proofs of these maps will be taken as they are being passed through the press to be supplied to the Quarter-Master-General's Department for such additions as will tend to enhance their military value, when they are finally published. The second series will form a general map of North Afghanistan in four sheets on the scale of $\frac{1}{4}$-inch $=1$ mile. The publication of these is at present suspended to permit of Major Holdich and his party resuming field operations in the Kohat district. Happily, there is no urgent necessity for immediate publication, and the delay will probably admit of additional gengraphical information, derived from reconnaissances which are shortly coming to hand, being incorporated into the series of maps.

XXVI.-SURVEYS IN DARDISTAN AND ON THE KISHANGANGA.

186. Colonel Tanner having proceeded to Europe on leave of absence, Native Surveyor Ahmad Ali Khan, who had for some time previously been employed under him in the survey operations around Gilgit, described in previous reports, was placed under the immediate orders of Mr. Hennessey, and deputed, with a small party of attendants, to operate in continuation of what he had done under Colonel Tanner.
187. The summer-the season of field work in these regions, though of recess in India generally-was somewhat far advanced by the time the surveyor reached bis ground, and shortly afterwards he became seriously ill and had to return to Sirinagar, in Kashmir, for medical treatment. Thus the duration of his field season was much curtailed. The work assigned to him was to visit the Kishanganga-Indus watershed, and from thence to sketch as much as practicable of the Dardistan country surrounding Chilás, which juts into Kashmir territory. No survey of this tract, which in shape somemhat resembles a horse-shoe, has yet been made, because the chief of Chilás views all foreigners with suspicion, and would be specially opposed to the admission of surveyors. But a sketch of its principal features, and of the passes leading into it, may probably be made from the summits of the mountains on the periphery of the horse-shoc, which is the border line separating this region
from the territories of Kashmir, and is thus accessible to Europeans. From various points on this line views may be obtained down into the valley of the river Indus, which lies at a considerable depth below, and passes through the middle of the horse-shoe.
188. Unfortunately, the winter had already set in when Ahmad Ali reached the Kishanganga-Indus watershed, so that the features of the view before him could not be separated, covered as they were all alike with the white snow. But he succeeded in sketching an area of about 200 square miles of new ground towards Chilas, and in fixing all the passes along the watershed; and ho was, moreover, able to obtain a considerable amount of supplemental topography in an area of about 600 square miles in the basin of the Kishauganga river, the first survey of which-made in the year 1858, during the mutinies-was necessarily very sketchy and imperfect, and greatly needed revision and amplification.

XXVII.-TRANS.HMALAYAN EXPLORATIONS.

1.-EXPLORATIONS IN AND AROUND BADAKSHÄN.

189. In the year 1877, M-S—, a Native gentleman of the Mahomedan faith, a Pir, or holy man, of much repute among his co-religionists-was about to make a journey from Kashmir, across the Hindu Kush range and the river Oxus, to Koláb, beyond Badakshan, to visit the shrines of his ancestors and transact some business of his own, when he learned from one of his friends, an employe of this department, that he might obtain employment in geographical exploration if he would volunteer his services and was willing to go through a course of training. His services were readily accepted, as he was a man of considerable intelligence and good education. He was brought down to the office in Dehra Dún, where he was put through a course of training under the veteran explorer Pandit Nain Sing. He then proceeded to his destination rid Kashmir, Gilgit, and Yasin, where he arrived on the 14th December 1878.
190. At Yasín he was hospitably receiverl by Mír Pahlwan, the chief of the country and brother of Mír Wali, Mr. Hayward's murderer; but he was detained by his host on one excuse and another for nine months. At last on the 3rd September 1879 he was permitted to continue his journey. Proceeding up the Darkoth Valley, in which Hayward was murdered, he crossed the Shunder Pass and eutered the head of the Mustauj Valley; then, crossing the Baroghil Pass, he entered the valley of Wakhán and struck the river Panjah, or Oxus, at Sarland. From this place he followed the well-known route to F'aizábád viá Kila Panjah, Ishkásham, and Zebák.
191. It was his intention to have proceeded from Isbkasham down the valley of the Panjah river to Shignán and Darwáz, but there was enmity between the rulers of these two states, and entrance into Darwáz from Slignán was prohibited. He could not therefore reach Kolíb by that route, but was obliged to proceed viä Faizábad. Here he was detained for two months, while the road to liustak was closed by the then ruler of Faizibad, Shálzáda Hasan Khán, who was at war with the ruler of Rustik.
192. When peace was temporarily re-established, M-S— started again; but the road to Rustak being still considered unsafe, he made a diversion to the sonth, to the Daraím Valley, which he ascended until he reached the watershed separating it from the valley of Jirm. Towards the end of February he was able to continue his journey to Rusták and Koláb. From Atan Jalab he followed the route previously taken by the Havildar. At Kolab he left the Havildar's route and proceeded up the Doába Valley as far as Rohát, beyond Javi Dara and Sághir Dasht, where ho found the Kún-i-Gau Pass into Darwáz impracticable He therefore retraced his steps to Deh Lálí, near Mowinilaid, where he maited awhile, until he heard that the Walwalak Pass into Darwíz was open. He then crossed into the Dara Imám Valley, and having traversed that to its head he returned on his sieps, and then crossed the Walwalak l'ass into the valley of the Panjah. He now followed the course of the river Panjah upwards, over fround previously unexplored, to Kila Khum, where he struck the route of the IIavildar. This route he followed to the junction of Wanj

with the Panjah, and then crossed to the south bank of the river and ascended it up to Varv, opposite Kila Yaz Gluulám, where the Havildar had been turned back because of hostilities between the people of Darwáz and their neighbours in Roshán and Shignín. At Vary he too was turned back for similar reasons. He retraced his steps to the Dara Inám, and thea followed the course of the Naýn river downwards to its junction with the Panjah, and on to Kisht. Here he crossed the Panjah river and then ascended the table-land of Shiva, and explored a route, hitherto wholly unknown, taking him across the central regions of Badakshan and into the upper basin of the Panjah river, which he struck a little above Kila Bar Panjah. He now proceeded down the river, passing near Kila Wámar, and eventually reaching Varv, the point from which he had been turned back on his journey up from Kila Khum. He thus secured an important link, which had hitherto been wanting to complete the course of the Panjah river. He then retraced his steps to Akhún, and proceeded viá Kila Wámar up the Bartang or Murghabi Valley, which he ascended to the highest inhabited point. He found conclusively that this river rises in the Sarez Pámír, and is not-what it has hitherto been supposed to be-a continuation of the channel of the well known Alssí river, which rises in the regions to the east of the Great Pámir. He was unable to strike into the lower valley of the Aksú ; but from such information as he was able to obtain, it appears that the river merges into the Sochan river, which joins the Shákh Dara river at Yamraj, the united streams passing into the Panjah river a little above Kila Bar Panjah.
193. Returning from the Sarez Pámír down to Kila Wamar, M-S— retraced his steps to Kila Bar Panjah, where he was laid up for five months by a severe attack of rheumatism. On recovery he proceeded to explore the Shákh Dara Valley, with the intention of crossing into Wakhan over the intermediate range of hiils; but the passes were then blocked with sand, and impracticable. He was thus compelled to retrace his steps to Bar Panjah. He followed the course of the Panjah to Ishkásham, along the route already traversed by Captain Trotter's explorer, $A-S-$, and made a connection with his former traverse at 'Turbat, near that place. Returning to Baroghil, he took the opportunity of visiting the Gház Kol lake at the source of the Yárkhun or Mustauj river; having determined its position, he turned his steps towards the Darkoth Pass, and closed his work there
194. M-S-has not only added considerably to our knowledge of the geography of Badakhshán and the countries bordering on it, but he has furnished many additional details regarding the routes which had been previously traversed. His work combines with previous survegs to furnish a well nigh complete delineation of the great bend in the Panjah river in its downward course from Walshan through the mountains out of which it emerges into the plans, to be known thencefurth as the river Oxus.
195. He has been presented with one of the two medals which were placed at the disposal of the Surveyer-General by the Venice International Geograpluical Congress for award to meritorious Native explorers.

2.-EXPLORATIONS ON THE FRONTIERS OF SIEKIM.

196. In 1879 Babu D. C. S., a learned man-attached to the Educational Department under the Government of Bengal-was about to proceed to Shigatze on business of his own. Being anxious to make the most of his opportunitios for acquiring new reographical information, he applied for instruction at the Surveyor-General's Office in Calcutta, where he was put through a course of training by Pandit Nain Sing, the well-known Trans Himalayan explorer. Starting from Jongri, in Sikkim, he crossed over the Kanchinjinga range to Yauga-tshal, in Nepal, on one of the upper affluents of the Tainbur river; then, taking the route which sometimes skirta, sometimes crosses, the western spurs of the Kanchinjingn, he went to the monastery of 'Tashichoding, near the village of Giamsar (Dr. Hooker's Khambachen): crossed over the formidable Chatang Pass, on the border line between Nopal and Tibet, into a plateau at the head of the Zemu river of Sikkim ; then crossed the easicr pass of Chorten Nyima Kang into the Tibetan province of Chang; traversed that province-taking a route to the west of the well-known town of Khamba Jons-and eventually reached Shigatze. On returning to India, he retraced his footsteps until he arrived uear Khamba Jong.

He then took the route which leods through that town to Sikkim over the Donkia Pass, on crossing which he passed out of the region of geographical reconnaissance into that of actual survey His journey has been fruitful of information: the observations of bearings and distances have been carefully taken and recorded, and are of much value for the requirements of mapping.
197. In $1880-81$ G.S.S., a Hindon of some account among his co-religionists, who had volunteered his services for exploration in Tibet, was deputed by Captain Harman from Sikkim to proceed towards the Dingri Maidan via the valley of the Tambar river in Nepal, a line of operation which would have taken him over much new ground. Instead, however, of ascending the Tambur Valley, he passed on to the parallel valley of the Arun, which he ascended to the so-called 'Popte' range, or, more strictly speaking, watershed, which here forms the boundary between Nepal and Tibet. Crossing the watershed, he advanced to the Tibetan village of Karta, beyond which be says he was not allowed to go. His journals are far from satisfactory, the observations being few and disconnected. Still, however, he has acquired some new information, chirfly of routes in Nepal, which is useful, as so little of Nepal is known to Europeans.
198. Captain Harman has constructed a map of the routes taken by Baboo D. C. S. in his travels from Darjeeling to Shigatze and back, and has prepared a detailed account of the journey. He has also made the most of the incomplete and unsatisfactory observation of G. S. S. that can be done in the way of mapping, and prepared an account of the travels of this explorer. Captain Harman has also prepared the map of routes followed by explorers, which faces the present page, and is based on a portion of sheet 9 of the Trans-Frontier series of maps prepared in the Trigonometrical Survey Office at Dehra Dún. He has given a memorandum explanatory of the construction of this map, and another memorandum on the most probable value to be adopted for the longitude of Shigatze, both of which will be found in the Appendix. He has taken great pains in the elucidation of information regarding the geography of the regions beyond the frontiers of Siklim; and from the stations of the survey in Sikkim, he and his assistant, Mr. Robert, have taken observations which have fixed a number of peaks on the ranges beyond the frontier, and thus extended the area of accurate framework which is of such use in compiling maps from the comparatively rough and rude observations of geographical reconnaissance.

3.-EXPLORATIONS IN GREAT TIBET.

199. In 1877 arrangements were made to send one of the explorers of this department into the regions of Northern Tibet, which are crossed by the parallel of 40° of latitude. In those days the Russion Prejevalsky had not yet made his famous journey from Guldja to Lob Nur, and there was a great belt of territory between Eastern Turkestan and Mongolia which was almost absolutely unknown. A native of India, who had accompanied the celebrated Pandit Nain Singh in his travels, was specially trained by the Pandit to undertake this new exploration. He started from India in the summer of 1878 with two companions. For a long time no tidings were received of him ; but about a year ago very distressing rumours reached Nain Singh, to the effect that he and one of his companions had been seized by the authorities at Lassa; that his companion, who was a Tibetan, had been put to death for having brought a foreigner into the country; and that he himself had had his legs broken, in order to put it out of his power to make further explorations. Happily this tale turned out to be a pure fabrication, concocted very probably by his second companion, who bad meanwhile robbed and deserted him. In May last, tidings were received from the Vicar Apostolic of Tibet, who resides at Ta-tsien-lu, that the explorer had reached Ta-tsien-lu in sufety last February, and that he was about to return to India by the direct route via Assam. He reached Calcutta very recently, bringing with him not only his journals, but his instruments, which he has managed to secreto and preserve in some wonderful manner, notwithstanding that on two occasions he was robbed of the greater portion of his property.
200. He has taken a number of astronomical observations, and kept up a more or less continuous record of bearings and distances along the line of
his traverse. Some tine must elapse before his observations can be reduced and plotted; thus at present no very definite information can be gi. regarding the geographical results of this last and most important ausHimalayan exploration. The general direction of the lines of minon can, however, be indicated.

The explorer, after spending some time at Lassa n...sing merchandise for sale in the regions to which he was bound, and ang arrangements to join a kaflu of traders returning to Mongolia, eveciually succeeded in making a good start. He accompanied the kafilu as far as a place called Thingali, which may be some 150 miles to the west of lake Koko Nur. There, in December 1879, the kafila was attacked by a band of some hundred mounted men of the Chiamogolok tribe. They robbed the explorer of most of his property, but had the grace to leave him about Rs. 200 worth of merchandise wherewith to prosecute his enterprise, and they did not appropriate his surveying instruments. From Thingali he struck off to the north-west, and eventually reached a place called Saithang, where he had to wait for the formation of a kafila of travellers proceeding towardi Lob Nur. There he was deserted by one of his companions, who robbed him of most of his little remaining property and his telescope. Though left nearly destitute he was resolved not to turn back. could he by any means avoid doing so. He and his remaining companion therefore took service with some Mongolians and tended their herds of horses for some months. Eventually they determined to move on with the limited funds at their disposal, and when these failed, to beg their way. They advanced to a place called Saitu, which may possibly be identical with Marco Polo's Sachiu. There they were detained seven months by Chinese Tartars, whom they were compelled to serve. Eventually a friendly Lama came to their assistance and rescued them, and in his service they returned to Saithang and proceeded south-eastwards to Barong Chaidam, some 100 miles to the west of lake Koko Nur, and then southwards 300 miles to the Thuden Gompa monastery. There they entered the service of a Chinese Tartar, whom they accompanied to Darchendo or Ta-tsien-lu, where they were kindly welcomed and helped by the Jesuit Fathers. They then commenced their return journey to India. Proceeding via Batang and Dzayul they reached Sama, a village on the eastern border of the country of the Mishmis. They endeavoured to make arrangements to cross the belt of Mishmi country between Sama and the British Frontier, but did not succeed in so doing; and being told that they would probably be murdered if they trusted themselves to such savages as the Mishmis, they turned northwards and took the circuitous route through Southern Tibet towards Lassa viá Alanto and Giamda, as far as the latter place, from which they turned down south-westwards to Chetang, on the Sanpo river, avoiding Lassa. Thence they proceeded viá Giangze Jong and Phari to Darjeeling, returning in safety to British territory after an absence of more than four years.
201. Sama, the village on the Mishmi border at which they turned away from the direct route to Assam, the explorer states to be situated on a river flowing into Assam, and to be the place at which two padre sahibs were murdered some thirty years ago. Thus it is identified with the Same of the Revd. 'F. D. Mazure, Vicar Apostolic of Tibet, in a memorandum on the countries between Tibet, Yunan, and Burma, published in Volume xxx of the Journals of the Asiatic Society, in which he speaks of it as the place where the two priests, Messrs. Krick and Boury, were murdered. The Vicar was, however, under the impression that his Same was situated in the valley of a river flowing into the Irrawady; but Colonel Yule, in his notes to the Vicar's paper, points out that we know from the reports of the British officers in Upper Assam that the two priests were murdered (about the month of August 1854) at a village called Simé in Wilcox's map, which is situated on the banks of the Brahmakund river-fhe eastern Brahmaputra-and he goes on to say that "this murder of two missionaries becomes thus, in fact, the basis of a geographical connection between British India and Tibet." This remark is even more apposite at the present time than it was originally ; for the murder of the missionaries enables us to identify with certainty the nearest point to the British Frontier which was reached by the explorer on his attempt to return to India via Assam. Wilcox reconnoitred
the Brahmakund river up as far as the village of Samleh, and he obtained the positions of several of the villages higher up, from native information. Thus it appesirs that his Simé was about 18 miles beyond Samleh. For this portion of the river we as yet liave no route survey; but the distance is so short that we may accept the position assigned to Simé in Wilcox's map without hesitation.
202. This being the case, the fact that the explorer was unable to proceed to India directly throurh the Mishmi country, but was compelled to make a considerable detour to the north, has been the means of our aequiring much additional geographical information, and more particularly of laring at rest the frequently-mooted question whether the great Sanpo river of Tibet flows into the Irrawady river or into the Brahmaputra. If the former, the explorer must have crossed it three times, first between Batang and Sama, secondly between Sama and Alanto, and finally at Chetang. He maintains that he only crossed it at Chetang, and that to the west of his route, between Sama and Alanto, there is a great range of hills, forming the water parting between the affluents of the Sanpo river and those of the well-known system of parallel Tibetan rivers which he crossed between Batang and Sama. He knows the Sanpo river well, and has crossed it frequently and in various places, and he is satisfied that none of the affluents of the system of parallel rivers which he crossed can possibly be the Sanpo.
203. A full account of his explorations will be got ready for publication, with maps in illustration, as soon as possible, probably within six months. Meanwhile, however, this statement of general outlines will suffice to show that the explorer has worked with great pluck and perseverance, never allowing himself to be turned back by misfortune and disaster, until he had succeeded in accomplishing a highly creditable amount of work, and meanwhile taking service with Mongolians, Lamas, and Chinese Tartars with a view to earn a livelihood for himself and his companion while carrying out the explorations.

TIDAL AND LEVELING OPERATIONS.

XXVIII.-THE TIDAL OPERATIONS.

204. The tidal observations and investigations have been duly continued, as

Personnel.

Mnjor J. Hill, R.E., Deputy Superintendent, 4th ginde, in charge op to 15 th Appil.
Mijor M. W. INigers, R.E., Deputy Superintendeut, 4th grade, in charge afler 15 th April.
Mr. W. G. Beverley. Assistant superintendent, lat yrade.
Mr. G. Belchan,
, E. J. Connor, Assistant Surveyor, 4 thig grade. Sul-Surveyor Dbonda Veluyeb. Baird, the officer by whom they were initiated, has been absent in Europe on furlough for the whole of the year under review, where, however, he has employed much of his leisure in promoting the investigation of the Indian tides. His place in charge of the operations has been held during the present year chiefly by Major Rogers, but partly by Major Hill, who, having to pass a military examination, was located at Poona, the head-quarters of the Tidal Party, and placed in charge of the operations, while Major Rogers took the field in charge of the Eastern Frontier Series Party.
205. The stations at which observations have been taken this year with the large self-registering tide-gauges of this Department are the following :-

Aden.	Negapatam.	Dublat Saugor Island).
Kurrachee.	Madras	Rangroon.
Bombay.	Vizagapetam.	Moulmein.
Karwar.	False Point.	Amherst.
Baypore.	Kidderpore.	Port Blair.
Paumben.	Diamond Harbour.	

The tidal station which had been established at Elephant Point, below Rangoon, has been dismantled and moved to another site higher up the river, together with the Telegraph Office and other public buildings; as the original site was being carried away by the river. The tidal station at Bhaunagar,
erected at the cost of Mis Mighness the Thakur of Bhaunagar, has met with an accident, which has prevented the setting up of a tidegange. Thus no observations have been taken at either of these stations during the present year.

Account of the Registrations, $\mathcal{y} c$., at each Station.

206. At Aden the tide-gauge has been working very well, with only two stoppages, both unimportant. The observatory was inspected by Mr. Belcham in December 1881, when all the instruments and driving clocks were taken to pieces and cleaned. The self-registering aneroid barometer and anemometer have unfortunately been unserviceable for the greater part of the year, and are being replaced by new instruments. Captain Thyne, the Port Officer, has rendered much assistance in supervising the work of the clerk in charge.
207. At Kurrachee the new large-scale tide-gauge, which was erected in the place of the small-scale gauge set up some years ago by Mr. Parker-in connection with the harbour improvement works-has been working very satisfactorily, the stoppages having been few and unimportant. The aneroid barometer has worked well. The registrations of the direction and velocity of the wind have been taken from an anemometer which is employed in connection with the harbour works.
208. At Bombay the registrations of the tide-gauge have been continuous, and in every way satisfactory; as also have beeu those of the self-recording meteorological instruments.
209. At Karwar the tide-gauge has worked well, with few and unimportant interruptions; the catgut string carrying the back-lash weight was frequently bitten through hy rats, and eventually wire had to be substituted for it. The aneroid barometer has been working satisfactorily, but not the anemometer, which appears to have become worn out, and must be replaced by a new instrunient.
210. At Beypore the tidal registrations have been continuous and satisfactory. The meteorological records were frequeutly interrupted; a fly-catcher was found to have made its nest in the case of the clock of the aneroid barometer; and the anemometer was injured by violent gales during the monsoon of 1881. The observatory was inspected by Mr. Belchan in February 1882, when the instruments were put into working order, and since then they have registered satisfactorily.
211. At Paumben some interruptions in the tidal registrations were caused by the pipe which connects the well of the gauge with the sea becoming corroded A new pipe was substituted and general repairs were effected in February 1882, and since then all has gome on satisfactorily. The aneroid registrations have been fairly continuous. No anemometer registrations have been made, as no instrument was available for the purpose.
212. At Negapatam the site primarily selected had been objected to on the ground that an observatory erected there would interfere with the traffic; a new site was therefore chosen on the western side of the back-water, about 100 yards south of the pier. A substantial structure was erected for the observatory; the instruments were set up, but with some delay, uwing to a mistako on the part of the packers in England, who had sent out ihe barrel of one tidegauge and the clock of another: thus the two had to be fitted together, which was done at the contiguous railway workshops. The tidal registrations were fairly started by the 1st Novenuber 1881; but some time elapsed befure the clerk in cliarge succeeded in mastering the details of the manipulation, and moanwhile there were several breaks of continuity in the record. The anemometer has been working well, but not so the aneroid, the clock of which appears to have been badly constructed originally, and subsequently the registering barrel was let fall by the clerk and so much injured that for some time the instrument was unserviceable.
213. At Madras the tidal registrations have been carried on satisfactorily thrcughout che year. In Felruary, when the periodical inspection was made, the pipes connecting the well of the gauge with the sea were thoroughly cleaned, and this necessitated a stoppage of the registration for 17 days. The cyclone of the 12 th November, which destroyed a large portion of the walls for the protection of the new harbour, did no injury to the gauge; but of course the transfer of the grage from the present wooden pier to a preferable site on
the new masonry pier has been postponed indefinitely. Captain Taylor, the Master Attendant, has rendered much assistance both here and at other ports on the Madras coast. Barometric and anemometric registrations are not made at the tidal station, as all necessary information regarding these meteorological elements should be obtainable from the Governnent Astronomer at Madras, boing regularly recorded at his observatory.
214. At Vizagapatam the tidal registrations have been satisfactory on the whole, the breaks of continuity being few and unimportant. The anemoneter has worked well throughout, and the aneroid for about half the year. The timber piles supporting the observatory have been eaten away to an extent which is reported to have imperilled the safety of the observatory; but steps have been taken to strengthen them sufficiently to last for another year, after which further observations will be unnecessary.
215. At False Point the tidal registrations have been going on more satisfactorily tban last year, and there have been no stoppages of more than a fer hours. In May 1881 it was detected that a general settlement of the staging on which the observatory was erected had been going on for some time, the bed plate of the gauge having sunk about seven inches since the instrument was first set up; the levels were again tested in December 1881 and May 1882, when further settlements of $1 \frac{1^{\prime \prime}}{}$ and $1^{\prime \prime}$ were found to have taken place, showing continuously progressive settlement at the rate of about two-tenths of an inch monthly. This has necessitated the application of corresponding corrections to the tidal registrations in order to reduce them to a fixed datum.
216. At Kidderpore the tidal registrations have been fairly continuous. but with occasional short breaks; these werc caused by the stoppage of the pendulum of the driving clock, which is attributed to shocks communicated by boats bumping against the piles on which the observatory is supported, and to vibrations caused by the action of the winds and tides. The barometric and anemometric registrations show several breaks, but these may be filled in with the aid of the records of the meteorological observatory at Alipore.
217. At Diamond Harbour so many breaks of continuity in the tidal registrations were caused by the stoppage of the pendulum of the clock, for the same reasons as at Kidderpore, that an attempt was made to substitute for the usual clock one of the chronometer escapement clocks which had been specially provided for employment on staging unsuited for pendulum clocks. The chronometer escapements were found, however, to be too delicate for the purpose, the hair springs being liable to break on very slight provocation: thus after a time the pendulum clocks had to be reverted to. The aneroid registrations were continuous throughout the year, and those of the anemometer for eleven months.
218. At Dublat the registrations of the tide-gauge were interrupted for 19 days because the bridge connecting the observatory with the shore was carried away in a storm. The staging is not sufficiently substantial and requires to be much strengthened. Here, as at Diamond Harbour, an escapement clock is necessary in place of the pendulum clock. The anemometer registrations have been most satisfactory throughout the year, but the aneroid barometer was frequently out of order.
219. At Rangoon the observations have been carriod on satisfactorily, but there have been numerous short stoppages of the clocks of all the instruments, due for the most part to the traffic on the wharf on which the observatory is set up. The immediate charge of the operations has been transferred from the Executive Engineer, Mr. King-who has given much valuable assist-ance-to an officer of the Port Trust.

220 . At Elephant Point the site of the observatory was so nearly cut away by the river that it became necessary to dismantle the instruments and remove them for safety to the Telegraph Offices. The observatory, whilst being removed on a raft, was washed away and lost. A new site was selected by Major liogers in March 1882, at the mouth of the Pee-li-ka Creek, about two miles from the I'oint, which, though not quite as open to the sea as the old one, has the advantage of being safe from the erosion of the river; the Port Trust is about to crect an obscrvatory there. Observations had been carriod on at the first site for nearly a year, and though their value is impaired by numerous breaks, they have sufficed for the construction of preliminary tide tubles.
221. At Moulmein the tidal registrations are reported to have progreased fairly well on the whole; but there have been frequent short stoppages of the pendulum clock, caused by vibrations of the pier on which the observatory is set up. The aneroid and anemometer have worked satisfactorily. A robbery took place here in June 1881, the only one that has occurred any where since the commencement of the tidal operations; the thieves took away such small articles as they could lay their hands on, and five of the tidal diagrams, in pure mischief, as the diagrams could not be of any use to them. Fortunately it is the custom every day to transcribe the hourly readings of the diagrams and post them to the office at Poona, in case of mishap to the diagrams: thus the theft was immaterial.
222. At Amherst there has been some erroneous tidal registration, because the pipes connecting the well of the gauge with the sea had become partially clogged with mud, a large amount of which is here held in suspension in the water. In such situations frequent flushing of the pipes is necessary; and when the clerk in charge neglects to do this, so much retardation takes place in the flow of water into and out of the well that the diagrams become inaccurate, and therefore useless. A sufficiency of correct registration has, however, been secured for the construction of tide tables for the coming year. The aneroid and anemometer registrations have been uniformly satisfactory.
223. At Port Blair the tidal registrations continue to be very satisfactory. This is due in great measure to the immediate supervision exercised by Mr. Humfrey, the Port Officer, who takes much interest in the operations. There have been two changes in the clerks in charge during the year: the present clerk is a convict, supplied by the Chief Commissioner, Major Protheroe. The aneroid registrations have been very satisfactory throughout the year. The anemometer was out of order, and had to be sent away for repair.

2:4. From the preceding description of the performances of the three self-registering instruments at each of the tidal stations, it will be obvious that a few spare clocks with spring escapements are required to be substituted for the pendulum clocks of the tide-gauges at observatories on piers and stagings which are subject to jars and concussions of sufficient force to stop the performance of a pendulum; also that a few spare aneroids and anemometers are needed to replace any instruments which are out of order and under repair, in order to preserve the continuity of the registrations. Application has therefore been made to the Director-General of stores at the India Office to tako early steps to supply four spare clock with lever escapements, and as many self-registering aneroid barometers and anemometers, for future use.
225. Reference should be made to paragraphs 186 to 190 of last year's report for information regarding the scales of the tidal-curve diagrams-which are adjusted to vary with the amplitudes of the tides between extreme high and low water at different stations-the instrumental adjustments, the references to a fixed datum, the periodical inspections, the duties of the clerks in charge, the despatch of the diagrams to the central office at Poona, the preparation of numerical tables from the curves of the diagrams, and finally the evaiuation of the tidal constants. These constants furnish the requisite data for the detcrmination of any past or future tide, either by direct calculation, or with the aid of a tide-predicting machine, such as the one which has recently been constructed for the India Office, and is being employed by Mr. Roberts in the preparation of the tide tables for Indian ports, which aro published under the orders of the Secretary of State for India.
226. Daring the present year large discrepancies were for the first time met with between the tidal prodictions and the actual facts of the tides. This arose from the circumstance that it was for the present year that predictions had first ljeen made for stations situated on the banks of great rivers, as the Hooghly and the Irrawaddy, in which the tides are influenced not only by the attractions of the sun and the moon, but by the amount of water brought down by the river from its sources, which varies at different seasons of the year. There are three tidal stations on the Honghly-Kidderpore, Diamond Harbour, and Dublat; two on the Irrawaddy-Rangoon and Elephant Point; and one on the Salween river-Moulmein. Tide tables were computed for these riverain stations as if they had been purely oceanic stations, and these tables
were found to be erroneous to the extent of occasionally an hour or more in the tines, and a foot or more in the heights, of high and low water. Attention was first drawn to the sulject on comparing Mr. Roberts' tables for Kidderpore and the other stations on the Hooghly with the tide tables published by the Calcutta Port Commissioners. Mr. 'Roberts' tables were based on five years' tidal observations taken in connection with the operations of the Department of Public Works, before Major Baird's tidal stations were established; the observations had however been reduced by the modern method of harmonic analysis. The Port tables were based on tidal observations taken in connection with the surveys of the river-bed and channels which have been made from time to time by the Port authorities, and they were reduced by the methods usually followed by the surveyors to the Adniralty. On omparing both sets of tables with the subsequently acquired results of actual observation, it was found that Mr. Roberts' predictions of the times of high and low water were almost invariably too early, while the Port table predictions were generally too late, the errors of the former being greatest; the errors in the predictions of height were pretty equally balanced between excess and defect, and were in no case very inaterial The mean values of the two sets of tables are much more accurate than the values in either set taken singly.

These facts have shown the necessity for supplementing the mathematical formuler for the harmonic analysis of purely luni-solar tides by formule to take cognizance of riverain influences. The subject is a very abstruse and difficult one, but it has been brought to the notice of some of the leading mathematicians in England, and there is much reason to expect that it will soon be satisfactorily disposed of. It is also expected that additions may be made to the India Office tide predicting machine which will enable the machine to fulfil its functions as satisfactorily for stations situated on the banks of tidal rivers as it has done hitherto for stations situated on sea cuasts. Meanwhile Mr. Roberts is adopting a provisional method of predicting tides for riverain ports. Which is described below in an extract from his tide tables for Diamond Harhour, in the River Honghly, for 1883.*
227. In addition to their practical value for the requirements of navigation, the Indian tidal observations are furnisning information which has already heen found to be of much scientific value. Thus they have recently thrown light on the question of the degree of the rigidity of the earth, which was mooted about fifteen years ago by Sir Willian Thomson, who appealed to the universal existence of oceanic tides of considerable height as a proof that the earth, as a whole, possesses a high degree of rigidity, and maintained that the previously received geological hypothesis of a fluid interior was untenable. At the recent meeting of the British Association for the Advancement of Science at Southampton, Mr. G. H. Darwin brought forward a "numerical estimate of the rigidity of the earth," which gives cridence of a tidal yielding of the earth's mass, and further indicates that the effective rigidity of the whole earth is about equal to that of steel. But it is only recently that there has been a

[^23]sufficient accumulation of tidal observations, properly reduced by Larmonic analysis, to test Sir William Thomson's theory ; and Mr. Darwin points out that the great advances in knowledge that have now been made are principally due to the adoption of systematic tidal observation at a great number of stations by the Indian Government.
228. Here it may be interesting to mention that the first systematic tidal observations which were made by this survey for reduction by the modern method of harmonic analysis were undertaken with the primary object of furnishing evidence regarding changes which were supposed to be taking place in the relations of the levels of the land and the sea; they were made by Major Baird, at three stations in the Gulf of Cutch, during the years 1873-75, with the intention that similar observations should be taken several years afterwards, when a sufficient interval had elapsed to allow time for a change of level of sufficient magnitude to be determined with certainty, from the first and last observations of the levels to take place. Whether the faith that a future generation would carry out an idea originating in the present generation which was then shown will ever be realised, remains to be seen. It so happens, however, that the recent tidal observations of this survey at another point are comparable with observations taken at the sane place upwards of sixty years ago. In 1821 Colonel De Haviland of the Madras Engineers observed the mean-sea level at Madras, and by his determination the mean-sea was about one foot higher then, relatively to a fixed point on the shore, than it appears to be now by our recent determination of the relation between the present mean-sea and the same point-a stone bench mark built into the wall of Fort St. George. The difference between the two results has hitherto been supposed to be due, possibly, to the circumstance that Colonel De Haviland's operations were restricted to observations of high and low water, and to a period of about $4 \frac{1}{2}$ months only; the observatious have, however, been receutly analysed by Major Rogers, who has found that they agree well with those of the present seli-registering gauge in the times of high water relatively to the full and change of moon, and also in the times of spring tides; and further that the mean level of the sea during the months corresponding to those in which Colonel De Haviland's observations were made differs by less than half an inch from the moan value for the whole year, arid is therefore a good value. Thus assuming no mistake to have been made in connecting the tidal observations with the bench-mark in Fort St. George-and such a mistake is very improhable-it may be considered established that the mean-sea level at Madras is about one foot lower, relatively to the land, now than it was sixty years ago.*

XXIX.-THE EARTHQUAKE OF THE 3lst DECEMBER 1881.

229 . On the morning of the 31 st December 1881 an earthquake occurred in the Bay of Bengal, which operated with considerable violence in the neighbourhood of the Andaman and Nicobar Islands, and with more or less violence along the entire length of the west coast of the Bay, from Ceylon to Calcutta, and was also felt, though comparatively slightly, at various points on the east const. In addition to the ordinary shocks produced by the waves of force acting through the ground, the surface of the ocean was greatly disturbed, and waves were formed which continued to roll against the coast lines for several hours after the cessation of the earth-waves, which lasted for only a few sceonds. The clerk in charge of the tidal observatory at Port Blair reported a great disturbance of the surface of the sea to have taken place there, which had violently agitated the pencil of the self-registering tide gauge, cousing it to oscillate in the course of a few minutes through spaces nearly equal to the entire noriual semi-diurnal oscillation, and after a time to tear the paper of the diagram. This had alarmed him so much that he stopped the clock and did not restart it for some hours, when there was less ngitation of the sensurface. He then found by the diagram that the earthquake waves were still

[^24]existing, and were following one another with great regularity; and they continued to do so for about twenty-five hours after the first shock of the earthquake was felt, when they died away. The diagrams at all the other tidal stations, for the same day, were then examined, and evidence of a succession of ocean-waves caused by the great earth-wave was unmistakeable at all the stations on the west coast of the Bay and at Dublat station-at the south end of Saugor Island-as well as at Port Blair. There was evidence of slight disturbance at Diamond Harbour, 33 miles up the Hooghly beyond Saugor Island; but there appeared to have been no disturbance whatever either of river-surface at Rangoon and Moulmein, or of ocean surface at Amherst, and these are the only points on or near the east coast of the Bay at which tidal registrations were being taken.
230. Diagrams of the disturbed tidal curves, reduced from the original records, are here given to indicate what actually took place at each spot and at the same moment of time. For the latter purpose, all the hour lines of the diagrams have reference to local mean time at Port Blair. The curves from midnight of the 30th December up to the times when the sea-waves began to reach each station-which fall between 8 a.m. ar Port Blair and 1 p.m. at Dublat, and possibly was as late as 3 p.m. at Diamond Harbour-are normal in every instance; and thus by comparing them with the curves for the remainder of the twenty-four hours, the influence of the earthquake in disturbing the normal tides is readily seen. For Port Blair and Negapatam the normal curves are drawn below the actual curves. At the former place the diagram was torn by the pencil, and the record is not continuous; at Negapatam the curve from midnight up to the commencement of the sea-waves is vibratory, and not firm, as at all the other stations; but there the

			I.	M.	
Diamond Harboor	\ldots	\ldots	0	18	
Dublat	\ldots	\ldots	\ldots	0	20
Fulse Point ...	\ldots	\ldots	0	24	
Viragapatam	\ldots	\ldots	0	38	
Madrag	\ldots	\ldots	\ldots	0	50
Negapatho	\ldots	\ldots	\ldots	0	52
Panmben	...	\ldots	\ldots	0	56

231. Both the officers in charge of the tidal operations, first Major Hill and afterwards Major Rogers, have taken much pains to ascertain all the facts of the primary 'Great earth-wave' and the subsequent 'Sea-waves.' It so happened that at the time of the occurrence of the earth-wave Major Rugers was measuring angles with one of the great theodolites of this Survey at a station on the Island of Kisseraing, below Tenasserim, on the east const of the Bay, as a part of the operations which are described in paragraph 34 of this report. He writes that he "saw the earthquake before feeling it," as he was at the moment observing a signal-distant sone 15 miles-which appeared to rise and fall in the field of the telescope. On looking at the levels of his instrument, he found that they were violently agitated. He immediately recorded the time at which the phenomenon occurred. Subsequently he ascertained that the earthquake had been felt, at almost the same moment, at Madras and False Point, on the opposite coast. Thus then Major Rugers, assuming the great earth-wave to have travelled with equal velocity in all directions from the origin or centre of impulse, considers that the origin must have been situated at some point in the Bay nearly equi-distant from Madras, False Point, and Kisseraing,-not in the centre of the triangle joining the three places, but more to the south, towards the line joining Port Blair and Negapatam, which was probably the line of greatest disturbance, as at, those places the sea-waves were greatcst.

It is remarkable that there should be no indication of any sen-wave at either of the tidal stations at Rangoon, Elephant l'oint, Moulmein or Amberst. This may be due tu the circumstance that the belt of islands and shoals which extends from Cape Negrais down to the Island of Sumatra forms a barrier to waves issuing from an origin near the centre of the Bay; the sea-waves were propelled with great violence against these islands on all sides and over the surrounding shallows, but they seem to have died away very rapidly in the deep sea beyond Moreover, the great earth-wave must have operated with far greater force towards the west thinn towards the oast of the centre of impulse; for violent shocks were felt all along the west const of the Bay, and to a considerable distance inland, whereas on the east coast the shocks were very ulight and barely perceptible.

TIDAL CURVES.

To illustrate the effects of the Earthquake of the 31 st December 1881.

TIDAL CURVES.
To illustrate the effects of the Earthquake of the 31st December 1881.
Scale of Height-

Note.-The Time lines refer to Mean Time of Port B'air.
232. The accompanying Chart of the Bay of Bengal shows the positions of all the tidal stations on both coasts, the trigonometrical station at Kisseraing, and Major Rogers' assumed centre of impulse. It also gives the values of all the soundings in the Bay which are believed to have yet been taken. Major Rogers' report is given in extenso in the appendix, and will be found to contain much additional matter of interest, including estimates of the respective velocities of the earth-wave and the primary sea-waves. It is believed that so full an account and such precise details of the phenomena of an earth ${ }^{\text {a }}$ uake have rarely been acquired hitherto. That they have been obtained in the present instance is mainly due to the existence of the many tidal stations which have been established on Indian coasts.

XXX.-THE SPIRIT-LEVELING OPERA'TIONS.

1.-THE OPERATIONS EXECUTED IN CONNECTION WITH THE TIDAL OBSERVATIONS.

233. These operations have for their object the connection of the several tidal stations by lines of spirit levels running along the coast lines and across the continent from sea to sea; also the connection of the principal stations of the great triangulation which fall in the neighbourhood of the lines of levels, with a view to the rectification of the differences of height which have already been determined by the less accurate trigonometrical method; and also, collaterally with these operations, the connection of the bench-marks of the Irrigation, Railway, and other branches of the Department of Public Works, with a view to their general combination and reduction to a common datum.
234. During the present year the main line of spirit-leveling was entrusted

Personnel.

Mr. Rendell.
Sub-Surveyor Narsing Dass and two recorders.
to Mr. Rendell. His first duty was to revise tho western ghât section of the line of levels from Bombay to Madras, with a view to ascertaining whether any accidental error had been committed in leveling up the steep ascent of the ghatts that would account for the discrepancy of three feet which had been met with at Madras on comparing the valuc of the mean sea determined from the local tidal observations with the value given by the spirit-leveling from Bombay. This has already been fully set forth in section XXVIII of the annual report for last year. The revision giving practically identical results with the first operations, Mr. Rendell proceeded to Calcutta and commenced a main line of levels to connect the tidal stations at Kiddcrpore, Diamond Harbour, and Dublat in the river Hooghly with the nearest tidal station on the sea coast, viz. the one at False Point on the Cuttack coast line.
235. Operations were commenced at False Point tidal station, whence the line of levels was taken along the coast to the lighthouse, and then across a very difficult network of creeks at the mouth of the Mahanadi river to the banks of Kendrapara canal. There terra firma was reached after wading for a distance of about 18 miles through an extensive jungly swamp, which is wholly covered with water at spring tides, and is never entirely free from it. The stands of the instruments had frequently to be set up in water two to three feet deep; and as the soil below was loose and slushy, so that any movement on the part of the observer disturbed the level of the telescope, Mr. Rendell had to summon up his coadjutor, Narsing Dass, from a station in rear to read the level at the moment that he was reading the staves with the telescope, and then to return and perform the same duty for his coarljutor; thus the independent measurement of the double line was maintained throughout in accordance with the long-established procedure for these operations, but with very much more of difficulty and delay. After reaching the banks of the Kendrapara canal the operations wero carried on, as usual, across country to Jhajpur, and thence along the Grand Trunk Road to Balasore. From Balasore a branch line was carried to the coast to connect the old tidal station at Balaramgarhi, while the main line was taken via Contai to tho Kakrahati ferry, across the Hooghly river, on the direct rond to Calentta. Various rivers and creeks, ranging from one quarter to three quarters of a mile in breadth, had to be crossed before Kakrahati was roached; but in all instances the crossing was accomplished by direct spirit-leveling, though occasionally staves with broader graduations
than those in ordinary use had to be employed, the distances being so great. To cross the Honghly river in this manner was, however, found impracticable, the river being considerably over a mile in breadth at its narrowest part. Mr. Rendell therefure set up temporary tide gauges on both banks, at a part where the main channel and the banks were parallel to each other. He and his coadjutor took simultaneous readings of both gauges at the times of high water, rising tide, and falling tide. Upwards of three hundred observations, extending over four days, were taken. A difference of level of nearly two inches was found between rising and falling tides; but the mean of both differed by only 65 of an inch from the level at the top of the tide when the surface of the river was neither rising nor falling. The general mean may be accepted as within half an inch of the truth, and is probably much more exact than any result which might have been obtained by measuring the vertical angles acruss the river, or by any other process.
236. After crossing the Hooghly river the line of levels was taken down to Diamond Harbour and connected with the tidal station there. It had still to be carried to the Dublat tidal station at the south end of Saugor Island; but the field season was now well advanced, und by the time that the line was brought down to the Baratola river, on the crossing to Saugor Island, strong winds had set in, which could not be faced by native boats; and as the survey party was dependent on these boats for the carriage of water and provisions, and usually resided on board of them, it was necessary to cease working downwards, and to proceed to Dublat by way of the inland creeks and back-waters. Thence the leveling was taken upwards, via the Saugor Light House, to the Baratola river, where a junction was effected with the down line. The party was now thorsughly exhausted, having undergone great hardships and much exposure. Field operations were therefore suspended. The out-turn of work is very creditable to Mr Rendell; for the length of main line leveled is as much as 380 miles, of which more than half fell on marshes, swamps, and paddy-fields, which had to be operated over very carefully and slowly. The several crossings of rivers and tidal creeks were also very troublesome, and caused much delay, and the exposure generally was excessive.
237. The programme for the next field season includes the completion of the line from False Point by the connection of the tidal station at Diamond Harbour with that at Kidderpure, and a further connection with the main line which was carried in the years 1858-6.5 from Kurrachee through sind, the Punjab, the North-Western Provinces, and Western Bengal to Calcutta. Lines of levels will also be carried along both banks of the river Honghly to furnish data for the claborate survey of that river and its banks, which is now being carried on conjointly by this Department and the Commissioners of the Port of Calcutta, as described in section XIII of the present report.
235. Subsidiary lines of levels were executed by a detachment from the tidal and leveling party in the districts of Nasik and Ahmednagar with a view to the correction of the heights of the principal stations at the southern ends of the Khanpisura and Singi series of principal triangles. These heights were mostly determined 30 to 50 years ago by the trigonometrical method, and they have been found to be less accurate than is desirable, the observations having in many instances been taken at other tincs than that of minimum terrestrial refraction, the laws of which were scarcely known then. Thus a revision of these heights was very necessary. It was undertaken by Mr. Beverley, who made a combination of the trigonometrical and spirit-leveling methods of operation, measuring the vertical angles at stations of the auxiliary line of levels to the surr unding trigonometrical stations, which were mostly situated on high hills inaccessible to the spirit-leveler. Mr. W. G. Beverley was prevented from continuing in the field for a full season by ill health, to which he afterwards succumbed, dying at Poona in September. Mr. Beverley entered the Surrey Department in the junior or subordinato branch in 1854. He served in that branch for about 17 years, during which he did such good service in the Himalagan surveys, chiefly under the late Lieutenant-Colonel 'T. G. Montgonerie, R.E., that he was promoted in 1871 to the senior branch.*

[^25]
2.-THE ORERATIONS IV CONNECTION WITH THE REVENUE SURFEYS.

239. The small party of levelers which has been employed for two previous seasons in the Hanthawaddy district of British Burma has again been organized. At the commencement of the season, the party first measured a line of 20 miles to close a circuit which had been left unfinished the previous year, and thus completed the several series of levels which had been laid out for the Hanthawaddy district.
240. The party then became free to take up new work of a special character, which had been planned in accordance with the wish of the Chief Commissioner that leveling should be done in connection with the survey operations in the Bassein district, as well as in Hanthawaddy. The character of the country where the Basscin cadastral party has been operating, situated as it is in the heart of the Irrawaddy delta, a tract largely intersected with tidal creeks, rendered it unnecessary that the ordinary plan of placing lines of levels at fixed intervals should be adopted; and it was desirable that special lines should be selected, such as would be most useful for practical purposes. This selection could best be made by an officer of the Public Works Department, who would be likely to make practical use of the level data. Accordingly, Mr. R. Gordon, Executive Engineer of the Henzadah Division, an officer whose duties Lad specially led him to give much attention to the physical character of the valley of the Irrawaddy, was consulted on the subject, and asked to say where he would recommend the lines of levels to be placed. Mr. Gordon's plan is to have lines of levels carried along two main branches of the Irrawaddy-one line from Pagoda Point, at the mouth of the Bassein river, the other from a little below Maoobin, on the China Bakeer river joining a little above Henzadah, and thence a single line northwards following the river up to the frontier. From Henzadah, another line will branch off eastwards to the Prome Railway, following which southwards it will terminate at Rangoon. This scheme was forwarded for the consideration of Mr. Furnival, Chief Engineer at Rangoon, who added traverse sections across the valley in the neighbourhood of Henzadah in addition to Mr. Gordon's river lines.
241. A commencement has been made of this plan of leveling by taking a line from a bench-mark of the Hanthawaddy levels to the eastern branch of the Irrawaddy near Maoobin, and thence following the river up to Henzadah. From this point, Major McCullagh, who has superintended the operations, had intended to have had a line taken eastwards to the railway, and thus to have completed a circuit through the railway series of levels and the Hanthawaddy levels, but the setting in of the rains prevented the programme from being carricd out. The line of levels measured is 128 miles in length and double throughout. The number of bench-marks is 129 , some of them being specially fixed marks, and some of them existing permanent objects. In carrying out the river line, the levelers had many difficulties to overcome, with many miles of high grass and jungle to cut through, and numerous streams, large and small, to cross. The levelers and the establishment suffered much from fever.

GEODETIC.

XXXI-ELECTRO-TELEGRAPHIC LONGITUDE OPERATIONS.

242. The electro-telegraphic operations for the determination of the

Personnel.

(No. 1 Aatronomical Parts.)
Minjor W. J. Henviside, R.E. (field senson), Depnty Suprintendent, Bral grade.
lientenant-Colonel W. M. Camplell, R.E., (recese) Deputy Superintendent, 2nd grade
Mr. D. Xikingon, (recess) Surveyor, 2nd gralle.
Sub-Surfeyer Dhoudo Bulwant Joshi.
(No. 2 Astronomiral Paty.)
M:jor Gearge Kiralant, R.E., Deputy Superintend. ent, 2 nid grade.
Mr. A. Homid. Assimant Surreyor, 1st grade. Sub-Siereryor Baboo Harenhai. differential longitudes of certain stations of the principal triangulation were resumed last year, after remaining in aberance since tho scason of 1576-77, as alrcady intimated in the lust report. They have been continued during the current year by Major George Straban and Major Heaviside, Major Strahan taking the place of Lieutenant-Colonel Campbell, who went on leave at the commencement of the field scason, and returning at its cond relieved Major Ileaviside and thus enabled him to take leave during the recess.
243. During the present year seven arcs have been measured, as follows:-

Fyzabad-Agra.
Fyzabnd-Jubbulpur.
Fyznbad Hazaribagh.
Jubbulpur-Hazaribagh.

Hazaribagh-Caleutta.
Hazaribagh-Julpaigori.
Julprigori-Oalentta.

An eightl arc, Fyzabad-Julpaigori, had been included in the programme for the field season; but before it could be commenced cloudy weather had set in at Julpaigori, and this made it impossible to carry on the system of simultaneous star observations at both stations, which is imperatively necessary to secure very precise results in differential longitude determinations.
244. The seven arcs of the current year, combined with the arc AgraJubbulpur, which was measured last year, present three verificatory circuits, as follows:-

			m.	8.
Fyzabad-Agra ... Fyzabad-Jubbulpur	16	27.932
	8	44.629
Agra-Jubbulpur	$\ldots\left\{\begin{array}{l} \text { doduced } \\ \text { measured } \end{array}\right.$	\ldots	7	$\begin{aligned} & 43303 \\ & 42.993 \end{aligned}$
	Cirouit error	\ldots		0.310
Hazuribagh-Fyznbad	\cdots	...	12	55.194
Hazaribagh-Jubbulpur	21	$40 \cdot 908$
Fyzabad-Jubbulpur	$\ldots\left\{\begin{array}{l} \text { deduced } \\ \text { measured } \end{array}\right.$	\ldots	8	$\begin{aligned} & 45 \cdot 194 \\ & 44 \cdot 629 \end{aligned}$
	Cirouit error	0.565
Jolpaigori-Hazaribagh Julpaigori-Calcutta	\ldots	13	27.071
	\ldots	1	30402
Calcutta-Hazaribag	$\ldots\left\{\begin{array}{l} \text { deduced } \\ \text { measured } \end{array}\right.$...	111	$\begin{aligned} & 56.669 \\ & 56.724 \end{aligned}$
	Circuit error	...	\ldots	055

245. The magnitudes of the two first circuit errors are largely in excess of the theoretical probable errors of the operations, and of any errors actually met with hitherto; they clearly indicate the presence either of defects in the instrumental equipment, or of mistakes in the calculations, which are somewhat intricate and troublesome. 'The performances of the transit instruments bad not been nearly so satisfactory as during the preceding years, so that before the calculations of this year's operations were completed and the amounts of the circuit errors were known, these instruments had been sent to the Mathematical Instrument Department in Calcutta for examination. Afterwards, when the circuit errors were known, the obscrvations and calculations were carefully scrutinised, with a view to tracing home all possible causes of sensible error. The analysis of the observations, however, revealed nothing. On the contrary, the results furnished by each arc, per se, were on the whole remarkably satisfactory. For instance, as a check on the work, the operations had been executed so as to give results by two distinct methods of procedure: one in which the transits of any star over both meridians are observed by both observers and are recorded on chronographs governed by one and the same clock, the clock at the distant station being telegraphically connected with the chronograph at the observing station for the purpose; the other in which the transits of a star are also observed at both stations, but at each station the transit is recorded in terms of local time, and clock comparisons are made periodically to enable the two sets of observations to be combined. The two methods were independent of each other, excepting as regards the observers and the instruments, which of course were common to both; and this necessitated the application to both of corrections for personal equation and instrumental adjustment, which wero based on the same constants, a single set of constants being employed for the whole
of the observations taken on each night. The results by the two methods were in all cases so closely identical, that there would have been no suspicion of error but for the subsequent tests which were afforded on completing and closing the circuits; and then the presence of material latent error became only too apparent.
246. Now it so happened that in the field season of 1872-73, when the electro-telegraphic operations were commenced in India, very discordant results were met with. The officers then conducting the operations were Major Herseliel, R.E., and Lieutenant-Colonel Campbell, and they eventually discovered, after long and careful investigation, that the construction of one of the transit telescopes, No. 2 , was defective, in that the attachment of the telescope tube to the transit axis was infirm and unstable. The instrument was placed in the hands of the Mathematical Instrument-maker at Madras and rectified, and from that time until now excel'ent results have been obtained, seven circuits having been completed, of which the average closing error is only 0.032 . Naturally, therefore, the operations of the present year were commenced without any suspicion of instrumental defects. While they were being carried on, however, some misgivings were felt; and it was therefore decided to send the instruments for thorough examination to the Mathematical Instrument Department at Calcutta as soon as they could be spared, after the conclusion of the field season. It was then found that the instrument, which had originally given trouble, was again in fault, as will now be explained
247. In order to facilitate transport, the transit telcscopes have been constructed in three pieces, the object-end tube, the eye-end tube, and the transit axis, which travel in separate cases. Before being set up for observation, the tubes of the telescope are fixed on the transit axis, for which purpose each tube carries a flange at one end, which can be bolted to the cube of the transit axis. As originally constructed by the makers in England, the tubes were simply soldered to the flange, - a very reprehensible arrangement, seeing that the joint is subject to great strain, arising from the weight of the tube and its appurtenances, which acts with considerable leverage. At Madras the soldering of the object-end tube of No. 2 was found to be giving way, and this was the cause of the bad performance of the instrument, for it introduced instability in the relations between the visual axis and the axis of rotation of the telescope. Here permanence is essentially necessary to satisfactory instrumental performance, because the value of the constants for collimation and level error are only obtained on the assumption of stability at all the joints and constancy in all directions to which the telescope is pointed-whether to stars in the zenith, to the collimators in the horizon, or to the mercury in the nadir. In order to strengthen the instrument, a metal collar was introduced inside the object-cnd tube and screwed to the flange. The screws passed through the tube, and thus attached it very firmly to the flange. For several foars the attachment answered perfectly; but now on examination it las been found to betray signs of weakness, and to an extent that is sufficient to cause the errors which have been met with.
248. The question may naturally be put-why was not the defective stato of this instrument found out somer? The answer is that as yet no means have been invented of readily testing the relations between the visual and the rotatory axes in every position of a transit telescope, with a view to examination from time to time, whenever desirable, and more particularly pari passu with the observations that are being taken with the telescope. It is invariably the custom in all the great astronomical observatories, and wherever such instruments are employod, to assume that the axial relations are either absolutely constant, or that they vary systematically by known laws-as of flexure, inequality of pivots, \&e.-for which due allowance can be made in reducing the observations. Thus when they happen to be unstable and inconstant, as in the present instance, the discovery of their condition is only made after the conclusion of the obscrvations; and even then it is only made when tho operations have been purposely carried out in such a manner as to show up all error, as in the present instance, by the application of the circuit test. It scems, however, to be just possible to provide a means of examining the relations between the visual and rotatory axes, whenever desirable, by fixing a small apparatus outside the object glass to reflect an image of
the wires for comparison with the wires themselves; then, by measuring the distance between the wires and their image, in different positions of the tolescope, eny inconstancy will at once be shown up. Experiments are being made by Lieutenant-Colonel Campbell with a view to constructing such an apparatus; and though as yet they have not been successful in surmounting the numerous difficulties which have to be overcome, success is still hoped for. If attained, it will far more than outweigh the loss even of all the operations of the present ycar.
249. It is probable, however, that three or four arcs of this year may, on further testing after the rectification of the defective instrument, be found free from error. It will be noticed that the last circuit of the season exhibits a far smaller error than the two first circuits. The two first lie chiefly in the North-West Provinces. They were measured during the coldest season of the year, when the daily range of temperature from extreme cold to extreme heat was much greater than it was afterwards found to be in Bengal, where the last circuit was measured as the hot seasou was commencing. Thus the relations between the visual and the rotatory axes of the defective transit telescope, which wore prohably unstable under the varying temperatures at the commencement of the field season, may have become fairly stable during the warmer and more equable temperature which prevailed towards the close of the season. This would account for the smaller errors latterly met with. Moreover, latterly the observer with No. 2 introduced a method of continuity of direction in the motion of the telescope in passing from the collimation and level observations to the stars, which probably also tended to cancel the evils caused by the defective condition of the telescope.
250. It only remains to state that, on the recent examination in the Mathematical Instrument Department at Calcutta, the attachment of the object-end tube of No. 2 toits flange was strengthened by the application of a more substantial collar than the one introduced at Madras, which has been attached to the flange by numerous screws as well as solder. Similar collars have been applied to the eye-end tube and to both tubes of the sister instrument, in all which the attachments to their respective flanges had hitherto remained in their original condition of dependence on solder alone, and were showing signs of weakness. It is to be hoped that the precautions which have now been taken will prove to be permanently effectual, and that the instruments will be found to be in as serviceable condition hereafter as they proved to be during all but the first and last years of their employment in India.
251. In the coming field season ares will be measured to furnish an additional check on the operations of last year, and extend them eastwards to Chittagong. Later on, the first arcs of last year will be revised. This arrangement is necessary to permit of the observations at the stations in Bengal and the North-West Provinces being corried on at the times which give best promise of cloudless skies in each locality. As a preliminary to the operations of 1883-84,* pillara will be constructed for the instruments at Akyab, Prome, and Moulmein.
[^26]
PART II.

THE OPERATIONS AT THE SEVERAL HEAD-QUARTERS OFFICES.

These offices comprise-
(1) The Survcyor General's Office.
(2) The Revenue Survey Office.
(3) The Lithographic Office.

All in Calcutta.
(4) The Photographic Office.
(5) The Mathematical Instrument Office.
(6) The Trigonometrical Survey Office, Dehra Dun.
252. New buildings have been designed for the three other offices

Personnel.
Major R. V. Riddell, R.E., Depaty Superin- Mr D. L. Mitchell. tendent, 2nd grade.
J. O. N. James, Isq., Deputy Superintendent, 3 rd grade
H. Dulian, Esq., Perional Aesistant.

Drafing Brance.
Drawing and Compiling Section.
Mr. W. H. Putterson

\% W. Greens

Chief Draftemnn.
Surveyor, 3rd grade. Drafteman.
"
$"$
$\Delta p p r e n t i c e$.
$"$
W. P. Smith
"
Geographical Examining Section.
Mr. A. Chamarett, Surveyor, 1st grade. W. Todd $\quad " \quad$ 2nd $"$ F. Adnms " 3rd

Buboo Mohesh Chunder Shaw and 2 otbers.

Enaraying Beanci.

Mr. C. W. Conrd, Superintendent.
W. Donaldson.
${ }^{1}$ G. G. Palmer.
" J. Fulford.
" T. B. Rogers.
," A. G. Paluner.
, S. M. Conrd.
\because A. W. N. James.
" A. R. Coard.
" A. D. M. Chamaratt.
, E. A. Ollenbach.
25 Native Engruvera and 1 Clerk.

Copperplate Printing Section.
Mr. W T. Collins, Copperplate Printer. 14 Native Printers and Pressmen, \&e

Cobrespondence Beanou.
Mr. T. W. Babonau, Registrar and Accountant.
Mr. M. Francis.
, F. A. D'Rozario,
, T. E. Ware.
" E. D. Algar.
Buboo Banee Madhub Banerjec. Mr. J. A. V:allie, Duboo Bheceum Singh, and 9 others.

Map Record and lssue Section.
Mr. R. A. Gibson
H. R. Vultis.
" W. P. Abro and 1 Native Clerk.
in Calcutta in the neighbourhood of the present building. They have not yet been commensed, and will probably not be completed for three years. But what has already been done is of very great value and importance. It has brought the administrative offices together under one roof, which will be of great help in furthering the general amalgamation of the three branches of the depart-ment-the tri-
gonometrical, topographical, and revenue-which was commenced in the year 1878, and has as yct been only partially carried out.
253. A few weeks before the close of the year under review the Department of Public Works in Bengal announced that the new building to accommodate the Surveyor-General's and the Revenue Survey offices, which had been under construction for about two and a half years, was ready to be occupied; and within a month after the close of the year the houses in Park Street and Middleton Strect, in which the offices had previously been located, were vacated, and the entire stock of maps and records-the collection of nearly a centurycopperplates, and plant of all descriptions, was transferred to the new building. This was an undertaking of great labour, extending over about three months, which unfortunately happened to fall in the hot season, and necessitating much forethought and careful arrangements to enable it to be carricd on so as to interfere as little as possible with the current work of the office. The supervision of the arrangements for the transfer of the SurveyorGeneral's office-which was very nuch the larger of the two, and had long grown beyond the linits of the accommodation afforded by the house in l'ark Strect, in which it had been located for half a century-devolved on Major Liddell and Mr. James; the transfor of the Revenue Survey office
devolved on Major Coddington. The whole of the arrangements were carried out most satisfactorily. The new building has been well designed and admirably constructed. It is commodious and airy; gives sufficient space for all the members of the office, excellent accommodation and lighting for the engravers and draftsmen-the former benefiting more particularly-as they had long been very incouveniently restricted in space, and for the most part were badly lighted.

1.-THE SURVEYOR-GENERAL'S OFFICE.

254. The duties connected with this office are supervised by Major R. V. Riddell, R.E., and Mr. J. O. N. James. Major Riddell conducts the work connected with the management of the topographical parties and their accounts,* and has charge of the Lithographic and the Mathematical Instrument Offices, and Mr. James has the managenent of the Drawing, Engraving, and Map Despatch Offices
255. The Drawing Branch has been employed on work of the usual kind, viz. compilations on various scales, of maps of India, provincial and district maps, and revisions of old maps from the results of recent surveys. The large demand for the map of India, scale 1 inch $=32$ miles, necessitated the issue of a second edition revised up to July 1882. Considerable progress has been made towards completing a series of outline maps of India on the scales of 1 inch $=64$ miles, 80 miles, and 96 miles. As these are in great demand to illustrate reports, engraved standards are under preparation, from which prints may be taken for transfer to stone at any time. At the request of the QuartermasterGeneral in India, a map of Lower Egypt was drawn and published for the use of the troops proceeding from India to Egypt. Maps of the Suez Canal, Cairo, and Alexaudria were also printed for the same purpose. All these were in great demand, and large numbers were sold to the public.
256. A new map of Bengal, Behar, and Orissa, with hills, scale 1 inch $=$ 16 miles, has just been printed. Owing to the constant alterations of the boundaries of districts in Bengal, the completion of this map was long delayed; and it was eventually necessary to prepare it for publication by double printing, the boundaries and district names being drawn on one stone, the topographical details and names of towns and villages on another; thus alterations of the frequently varying details may now be carried out without injury to the permanent details, which was impossible when both were drawn on the same stone; and in future new editions of the map may be readily published soon after further changes of boundaries.

Several district maps on the $\frac{1}{4}$.inch scale were prepared for publication; also maps for the North-Western Provinces Gazetteer and drawings for the engravers for new sheets of the Indian atlas. Full details connected with all the work in progress and completed will be found in the usual statement given in the appendix. \dagger
257. The Examining Branch continues to render good service in the examination and scrutiny of the mapping rendered each year by field parties of the topographical survey, also of the compilations and drawings prepared in the Drawing lbranch, and of all the proofs of prints received from the Engraving, Lithographic, and I'hotograplic branches of the office, which is a very laborious undertaling. Fifty-eight standard sheets of the topographical surveys, 25 original compilations, proofs of 138 engraved mups and of 469 lithographed and plotozincographed maps, wore examined in addition to other miscellaneous work. \ddagger
258. Engraving Office.-The Bengal sheet (No. 4) of the standard map of India has been completed in outline, and the hill-etching will now be taken up; on shcet 5 (Madras presidency) the hills have nearly been completed; the outlines for sheet 6 (Burma and Tenasserim) are complete; sheets 1 and 3 are

[^27]To accompany Surveyor General's Report for 1881-82.

as yet incomplete as regards portions of Afghanistan, Rijputana, and Central India. Great progress has been made on the hill-etching of the map of India, scale 1 inch $=64$ miles, only Afghanistan and a portion of the hills on tho Eastern frontier remaining to be finished. The map is expected to be ready for issue by next July or August. The map of the Central Provinces, scale 1 inch $=16$ miles, bas been completed, with bills. Nine quarter sheets of the Indian

$31 \mathrm{~N} . \mathrm{W}$.	$77 \mathrm{~N} . \mathrm{E}$.	Atlas as per margin have been completed during
$32 \mathrm{~S}-\mathrm{w}$	the year. Forty-two others are in different stages	

53 N.W. 130 S.E.
66 N.-W. 138 N..W.
67 S.-E. of progress; 23 of the old large size full plates
of boundary. Small addition Vere arious other maps of a useful character are in hand, the details connected with the progress of which are given in the statement of work in the appendix. The total out-turn of engraving work is as follows:-2,069 square inches of hilletcbing; 362 square inches of minor details, such as forest and sand hills; 3,792 square inches of outline; and 225,576 letters engraved. The hill-etching of the map of India on the scale of 1 inch $=64$ miles, and on the new quarter plates of the Himalayan sheets of the Indian Atlas, is highly artistic and effective, and very creditable to the European engravers by whom it has been executed. The steel facing of the copperplates continues to be carried on successfully, and 99 plates have been thus treated before being printed from during the year. The young engravers trained in the office are now by turns employed on this work. In the Copperplate Printing Branch 7,573 impressions of maps were printed, 1,053 proofs were pulled, and 341 transfers prepared for transfer to zinc or stone.*
259. The work in the Map Record and Issue section continues to increase; the map issues and work connected therewith are briefly as follows :-

In addition to the above 23,236 sheet maps were coloured by contract for sale and issue, and 7,375 for other departments. The amount realized by map sales through agents and deposited in the Government treasury was Rs. 10,211-10-9. \dagger
260. The work of rearranging, classifying, and cataloguing the original maps is proceeding steadily, and will probably take auother year to complete. This work was much nceded, not merely as a matter of convenience, to facilitate ready access to any map that might be wanted and to indicate the maps to which reference should be made for specific facte, but because the numerous changes in territorial limits which have takon place in India during the past century coused some difficulty in identifying the portions of country to which they actually refer under the existing territorial divisions of Britisla and Native districts and States. Moreover, the old register volumes in manuscript, which have been in use for the past 60 or 70 years, have become almost illegible from constant use and the fading of the ink. Steps are being taken to priut the new register or catalogue in the same form as the catalogue of manuscript and priated reports, field-books, and maps, \&c., in the India Office, London.

[^28]
2.-THE REVENUE SURVEY OFFICE.

261. The Revenue Survey Office receives and examines all maps and other

Personnel.
Lieuteannt-Colonel J. Sconce, Deputy Surveyor-Genernl and Superintendent, Revenue Urancb.
Major F. Coddington, Deputy Superiutendeut, 2nd grade.

Draming and Compoting Branoh.

Draving and Compiling.
Mr. F. W. Kelly, Surveyor on duty.
"J. Connor, Aasiatant Surveyor and Draftsiman.
Buboo Hari Hur Sen, Head Computer.
, Tincowry Son, Computer.
Sheikh Mehir Ali, Drafteman.
" Golam Moliumud "
$"$ Abdul Azeez "
, Hohim Bux " and 14 others.

Map-examining.

Mr. T. W. Reilly, Surveyor and Drafteman.
Mr. R. C. D. Ewing, Agsistant Surveyor and Draftsmon.
Sheilh Abdur Rozak, Draftsman.
, Wabed Bux,
Cadastral Map-examining.
Mr. W. Sinclar, Surveyor and Drafts. man, on furlough from 21st April 1882

Mr. J. H. O'Donol, Sarveyor and Draftsman
Sheikh Kodrut Ally, Draftsman, and six others.

Records and Map issue.

Mr. W. J. Lane, Assistant Surveyor (died on 11th October 1882). Bnboo Ashootosh Ker and one other.

Corbrspondrnce and Adoounte Branch.

Correspondence.
Mr. A. E. Byrd, Registrar.
B, A. C. Cunninghnm, ITend Clerk.
Baboo Kally Pudo Banerjee, Clerk. " Doorga Narain Ghose, do. n Ramkisto Chunder, do. "Clerk. Sham Churn Chuckerbutty,
Baboo Raj Coomne Dutt, Clerk.
, Kally Kisto Chunder, Despatcher, and three otbers.

Accounts.
Mr. Gopal Chunder Lahn, Head Ac. countant.
Baboo Bama Charn Chuckerbutty, Accountant, und two others.
professional records executed by the 10 field parties at present constituting the Revenue Survey Branch of the department. This office also has charge of the records of all previous surveys execnted by the Revenue Branch, and replies to references connected with these completed surveys. The office likewise supervises the expenditure in the Revenue Branch, and keeps its accounts. A summary of the out-turn of the field work in the several parties of this Branch, with statement of cost and rates, is given at 85 to 91 of the pages 78 and 79 . The Statements A and B (pages 85 to 91 of the
appendix) exhibit the maps and other records prepared in the field offices and head-quarters office respectively, and Table C (page 92 of the appendix) gives a detailed statement of the number of cadastral maps printed since the commencement of cadastral survey operations, as well as the number printed during the past year.
262. The following is a brief review of the summary of the field work as shown in the table at page 78. A column has been added to the table showing the rate of the cadastral surveys per field, besides the usual rate per acre. The general rate for the cadastral surveys in the North-West Provinces is Rs. 138-13.3 per square mile (Re. 0-3.6 per acre), which bears a favourable comparison with Rs. 159-4-11 per square mile (Re. $0 \cdot 4-0$ per acre), the rate for last year. The diminution in the total area surveyed cadastrally in these provinces is accounted for by the withdrawal of one of the three parties bitherto employed. The three cadastral parties in British Burma have surveyed 231 square miles more than last year, and have worked at a cheaper rate, the general rate for the year being Rs. 232-4-9 per square mile (Re. 0-5-10 per acre), against Rs. 250.8-7 per square mile (Re. 0-6-3 per acre) of last year. The rates for the 4 -inch surveys in the Punjab are slightly higher on account of the areas-all that remained for survey-being less than last year. The low rate of Rs, $53-6-2$ for the 4 -inch survey, done for forest purposes in the Bombay presidency, has been obtained by reason of the extent of open country which has been surveyed with the forest lands. A small area of forest reserves in British Burma has been surveyed at a high cost, occasioned by the extremely intricate nature of the country. The topograpical surveys on the 2 -inch scale have been accomplished at very similar rates as in previous gears. The very low rate of the survey in the southern collectorates of the Decean is due to the greator part of the country being open and easy for survey. The new topographical survey of the banks of the Hooghly river in the neigbbourhood of Calcutta has proved a very tedious and costly undertaking; the intricate village sites lying along the river, and forming the greater part of the area surveyed, have rendered the work more minute than the survay of many a town would be.
263. The following maps, drawn in exccutive offices, have been examined and published during the year, viz.-

District Rawalpindi, Kola Chitta Pahar
Meerut Division, Topographical Survey
Ditto ditto

British Burma, district Henthawaddy
Deccan and Konlan Topographical Survey .
Distrist Pooree, Killa Khorda
Patna City and Bankipore civil atation
Cadastral maps of siugle villages, in districts in Not th-West Provinces
$\begin{array}{ccc}" & \text { in districts in British Burma } \\ ", & \text { in district Pooree (Bengal) } \\ \text { in distriot Syllhet (Assam) }\end{array}$

13 sheets on 4 -incl scale.
64 sheets ou 2 -inch scale, for reproduction to scale.
76 sections on 2 -inch senle, for reduction to 1 -incl scale and publication in 19 sheets.
16 sheete on 2 -inch scale, for reproduction to scale.
36 sheets on 2 -inch scale, for reproduction to scale, and the same for reduction to 9 sheets on l-inch scale.
40 sheets on 4 -inch scale.
2 sheets on 10 -inch scale.

	sheets	on 16-inch scale.
2,430	ditto	16-inch do.
104	ditto	32 -incl do.
	tto	16-1

2,540 sheets on 16 -inch scale.
2,430 ditto 16 -inch do. 16 ditto 16 -inch do.
264. The following maps, drawn in the Revenue Survey Office, have also been examined and published, viz.-

Dera Ismail Khan

Miduapore

Moradabad and Budaun districts and Rampur State
Oudh districts (new edition)
Noakholly district

9 sheets on 1 -inch scale (drawn in 36 sections on 2 -inch scale).
1 sheet on 1 -inch scale (drawn in 4 sections on 2 -inch scale).
1 sheet on 1 -ineh scale (drawn in 4 sections on 2 -inch senle).
6 sheets on 1 -inch scale.
11 sheets on 1 -inche scale.
265. Besides the examination and drawing of maps as shown above, the time of the draftsmen has been largely occupied, as will be seen from Table B, in supplying copies of miscellaneous maps and records to Government officials. Attention to the demands of private individuals for copies of village plans has engaged a large part of the time of a section of the office. The actual copying of the plans is done at the expense of the applicants, but the labour of identifying the plans according to the descriptions sent falls upon the office draftsmen, and the draftsmen also supervise the copying. Applications for copies of plans come almost exclusively from Bengal.
266. All the records received have been examined and brought on the register of the office, the usual final check on the computations laving been carried out for three districts.*
267. The Deputy Surveyor-General acknowledges the very valuable assistance he has received from Major F. Coddington in all matters connected with the administration of the Revenue Branch.

3.-LITHOGRAPHIC BRANCH.

268. The number of maps, plans, and drawings published during the year

Personnel.

Major R V. Riddell, Il.B., in charge.
Mr. H. L, Lepuge, Iend Assistnut.
Habn Bolornm Nath,
$\left.\begin{array}{l}\text { Habn Bolornm Noth, } \\ \text { Munshi Mnhomed Azim, } \\ \text { nond } 22 \text { others, }\end{array}\right\}$ Draftemen.
Mr. H. Niven, Chromo-Litho Printer, on lenve.
"Press Asaistant and 60 others. " olficiating.
1 Press Asqistant and 60 onthers.
Mr. E J'l' vilh, Type l'inter, and 22 others.
I'larec mutive clerlis.
amounts to 421 , of which 267 were undertaken to meet the requirements of other departments, and only 154 for the requirements of the Survey Department.
260. It has been found necessary to commence a reprint of the oueinch scale sheets of Oudh; two sheets have been printed, and several are

[^29]The new maps of Bengal with hills, scale 1 inch $=16$ miles, which has already been referred to in paragraph 256, was printed on two stones-the topographical and other permanent details in black, the varging district boundaries in red. A preliminary map of the Central Provinces, scale 1 inch $=16$ miles, obtained by a transfer to stone from the incomplete engraved plates and the hills in part drawn on stone, has been issued. Six sheets of the Indian Atlas (Nos. 30, 40, 48, 67, 112, and 119), the copperplates of which were in a damaged condition and unfit to repair, were transferred to stone and printed with large additions and corrections. The following district maps were com-pleted:-Seebsaugor, Goalpara, Khulna, Dacca, Sylhet, Beerbhoom, Balaghat, Sonthal Pergunnahs, Kamroop, and Raepore, scale 1 inch $=4$ miles; Hoshiarpore, scale 1 inch $=2$ miles in four sheets.
270. From other departments 337 subjects comprised in 346 sheets were received for publication, and the value of the work performed amounts to Rs. 20,111.*

4.-THE PHOTOGRAPHIC OFFICR.

271. Major Waterhouse returned from furlough and resumed charge from

Personnel.

Major J. Waterhouse, B.S.C., Assist-
nat Surseyor-Genernt, in cbarge.

Negative Bbanct,

Normal Establishment.
Mr. J. Mackenzie, PLotographer. „ C. DeCruze, Δ sst.
lenuail Khan
2 negntive rotouchers, 2 "glasscleaners, and 1 bbisti.

Cadastral Establishment.

Mr. C. Marsbill, Pbotograpler.
L. Lagnier
T. Lloyd, Asst.
4. Assistant Pholographers, 3 nega. live retouchers, 4 glass-cleaners, and 1 blisti.

Photo-Thanster Printing.
Normal Establishment.
Mr. J. Harrold, Photographer. Mubibul Hossain, Asst. 2 labourers.

Cadastral Establishment.
Mr. R. George, Photographer. 2 Assistant Pbotographers and 4 labourers,

Silver-Phinting Branoi. Normal Establishment.
Mr. G G. Dempster, Photographer 2 Assistant Photographers and 2 labourers.

Zinc-printing Banane. Nornal Establishment.
Mr. H. Mackenzie, Zincographer. 1 writer, 4 zine correctors, 5 printers, 4 spongemed, 16 press. men, and 3 grainers.

Cadastral Establishment.
Mr. J. Watson, Zineographer (on deputation) to Litho Branch from 10th Apill 1882.
Mr. F. A. LeTranc, Zincographer. 1 writer, 8 zinc correctors, 7 printers, 4 apongemen, 15 pressmen, and 6 gruiners.
Ganeral Officr Establietment. Normal Establishment.
Bnboo Kanny Lall Scn, Store-keeper and Accountant, and 2 clerks.

Cadastral Establishment
Head Assistant (vucunt), and one clerk. Major Cowan on the 26th December 1881.
272. The out-turn of the office during the year is given in the annexed abstract, and shows a considerable increase in the number of original subjects reproduced, though with a decrease in the number of printed copies, as fewer prints were demanded. Statements showing the comparative out-lurn of the present year and the year before, of expenditure and value of work done, and of work done for other departments, are given in the Appendix.
273. The value of the printed maps and other subjects issued during the year has been-

Dennrtmental	\ldots				Rs.
Extra departmental	\ldots	\ldots	\ldots	\ldots	28,428
Cadastral	\ldots	\ldots	\ldots	\ldots	$\mathbf{1 6 5 5 1}$
			$\ldots 9,836$		
			Total	\ldots	$\mathbf{1 , 1 4 , 7 9 5}$

The direct expenditure for establishment and stores has been Rs. 93,146, so that the profit to credit of the department amounts to Rs. 21,649.

274 . The subjects received for reproduction during the jear have been of the usual miscellaneous character. A large number of maps of Egypt and charts of the Red Sea, Suez Canal, Alexandria, Port Said, and Suez werc reproduced for the use of the Indian contingent, the military authorities, and the general public. Happily, provision had been made of the best available maps of Egypt and the Suez Canal, chiefly French; and from single copios of these we were able to meet demands till better maps were received from England. The way in which these sudden calls for war maps can be met by photoziucography is the best exemplification of its practical value. Of the War Office map in 4 sheets only two copies were rcccived in this country, but by reproducing one

[^30]we were able to supply 400 copies, in 1,600 sheets, of this very useful wap in a very short time; besides redrawing it on blue prints and reproducing it on half scale, so as to bring it into one sheet.
275. The number of sheets of cadastral maps printed off and issued during the year was 4,856 , which is 311 sheets more than last year, though the number of copies printed is less, owing to the North-Western Provinces Government only requiring 10 copies of each sheet.
276. An improvenent has been introduced into the process of intensifying negatives, by which the use of hydrosulphate of ammonia is dispensed with, thus avoiding the very unpleasant smell of this chemical and effecting a very considerable saving in expense. Improvements have also been made in the photo-transfer process by the use of enamelled transfer paper, which gives much sharper prints than the paper ordinarily in use.
277. Some progress has been made in the introduction of heliogravure; an improvement in the method of graining the gelatine reliefs by means of waxed sand, which was effected by Major Waterhouse recently while ou furlough, has put the process on a very practical footing for balf-tone work. The system of electrotyping adopted at Vienna is found to answer very well, being exceedingly simple and regular in action. There are still some difficulties to, overcome in the application of the process to large map work, which have forned the subject of considerable experiment during the year. Two plates of very delicate shaded drawings of basalt crystals have been reproduced, and 800 copies of each printed for the Geological Survey; four more plates of the same kind are in hand. The advantages of the process over lithography for this kind of work are the fidelity with which every touch of the artist is reproduced and the evenness of the printing; the plate, when once steel-faced, yields an almost unlimited number of equally good impressions. The process has been very fully described with all late improvements in Major Waterhouse's report, given in the appendix, in which will also be found further details of the working of the Photographic Office during the year.*

Abstract of Work perfornted in the Photographic Office from 1st October 1881 to 30th Septrmber 1882.

			\qquad	Number of plates.	Number of pulls.	NtMARR of Patyted sufets of rach sumject.			Cust.
						Single.	Combineal.		
									Rs, A. P.
Topogmphical maps	102	27.3	2.41	31	8,415	8,503	8,503	10.4	7,189 11) 3
Revenue smvey mups...	300	606	637	810	17:172	17,374	17,272	13,910 7
Districl maps Geneal maps	$\stackrel{2}{4}$	-	...	37	${ }_{6}^{6,060}$	3, 450	- 40.150	97	183
Cny nnd cmmonment pinns... $\quad .$.	18	69	69	3.4	+, $\mathrm{N}+5$	+,865	2,723		1,386 1,975 16 18
Miscollimeous, departmental	364	476	8:0	209	13.805	38,301	27.718	310	
bito extra depurtmental...	4 ± 0	519	557	367	43, 3,25	67,905	47, $4 \cdot 5$	92	17.948118
Translers and proufs	\ldots		2.655			
Total	1,200	1,848	1,913	800	09,017	125.21s	107,329	6:39	52.92 ± 0
Caduatral, North-Tostern Provinces.									
Photozincographs Fincogruphs	$\begin{aligned} & 1,920 \\ & 50 . \end{aligned}$	1,020 \cdots	1,030	$\begin{array}{r}1.981 \\ 591 \\ \hline 1\end{array}$	$\underbrace{}_{\substack{19,410 \\ 6,0.60}}$	10,410 b. 940 10	19,310 5.650	
Total	2,64	1,020	1,990	2,55	25.360	25,360	18.940	\cdots	35,035 11
Cadastral, British Burma.									
Pliotorincograplig Zincographs	$\begin{array}{r} 1,584 \\ 7 \\ \hline \end{array}$	1,584	1,105	1,593	$\begin{aligned} & 54+160 \\ & 20,240 \end{aligned}$	$\begin{aligned} & 5,150 \\ & 80,2.19 \end{aligned}$	$\begin{gathered} 20.965 \\ 9.014 \end{gathered}$	$\begin{array}{lll} 25,870 \\ 8,378 & 16 & 6 \\ 0 \end{array}$
Total	2,34	1,594	1,605	2,354	80,408	80,403	29,309	34.159 110
Cidantral, Bengat.									
Phofnzitirngraphs Zincugrapha	${ }^{105}$	106	104	101 1 1		3,782 50	955 60		$\begin{array}{cccc}1,480 & 8 & 0 \\ 13 & 4 & 0\end{array}$
Total	105	101	104	105	3,372	3,832	1,005	1,690 12 0
Cadastral, Assam.									
Photazine, graphs Prunsfers and prooly for caduätral mapa ...	16	16	16	13	0,075	101	325	2460
Orand Total	6,241	5.472	8.473	6.79;	215,71:	235,203	150,909	${ }^{133}$	1,23,260 $\quad 2$

[^31]
6.-THE Mathematical Instroment department.

278. The financial year 1881-82 was a busy period for this Department,

Major R. V. Riddell, R.E., Superintendent.
Major S. F. Cowan, S.C., Officinting Superintendent, from 3rd July to 2nd October.

Forkshop Dranch.
Mr. T. Bolton, Mathematical Instru-ment-maker.
Mr. F. Murshall, Assistnnt Mnthematienl Instrument-minker.
64 nrtificers ou the permanent establishment.
75 (on an avernge) artificers on the temporary establishment.

Store Branch

Mr. G. R. Alderman, Store-keoper.
Babon Womesh Chunder Chowdhry, Mnterinl Store-kceper.
1 Packing sitcar.
2 Packers.

Office Brauch.

Mr. M. O'Brien, Hend Clerk.
, J. W. Collins, Second Clerk.
6 other permanent clerks.
1 extre clerk. especially during the last five months of the year, when the demands, due chiefly to the requirements of railway extension surveys, taxed its resources very heavily.
279. The total number of instru-
ments, \&c., received amounted to 26,220 . These were ralued at Rs. $1,70,080$, and the result was derived from the following detail:-4,970 instruments, in value about Rs. 28,130, were received from England ; 4,685 were locally purchased at a cost of Rs. 23,390; about 9,010 , were manufactured in the workshop at a cost of about Rs. 17,720 ; about 7,560, valued at Rs. $1,00,850$, were received by inter-departmental exchange; of these about 22 per cent were serviceable, and the remainder repairable. The serviceable stock was further increased by the repair on the premises of more than 2,850 instruments (part of the repairable stock), at a cost of a little over Rs. 12,300, which, after repair, were valued at about Rs. 32,120.
280. More than 20,800 instruments, in value very nearly Rs. 1,74,100, were issued during the year, viz.-

About 1,570 instruments were repaired for various departments, at a cost of about Rs. 14, 100.
281. The total number of instruments issued was very little greater than the number issued during the previous year, but the proportion of expensive instruments having been much greater during the latter year, the total value of the instruments issued was about 50 per cent in excess of the issues of the previous years. This result was caused by the largely increased requirements of the Public Works Department (due, as before stated, to Railway Extension Surveys), to which the average number of instruments issued in the years 1878-79-80-81 was 4,160 , at a value of Rs. 35,200 ; while in the year under report 7,590 instruments were supplied to that Department, at a value of Rs. $1,02,390$.
282. The average number of theodolites and levels issued annually during the three years 1878 to 1881 was 88 for the former and 78 for the latter instruments. During the year under report the numbers were 118 and 198 respectively, and more could have been used if they had been available.
283. The stock of instruments locally purchased was exceptionally great; and as it was purchased under very unusual conditions, no comparison can be made with the supply procured from this source in any other year. In the month of August a requisition was reccived from Burma for a large supply
of instruments for Railway Extension Surveys. Similar demands soon followed from other quarters, and before the end of the calendar year the stock of instruments used in those operations had been completely exhausted; whilc at the same time a large number of these instruments were still required for immediate use. It is found that the demand could be met to a great extent by local purchases. Consequently, at the end of the month of January application was made to the Government of India, in the Public Works Department, for an extra grant of Rs. 35,000 for the purchase of instruments for that Department. Sanction to this measure was granted in letter No. 53S, dated 15th February 1882, from the Under-Secretary to the Government of India to the address of the Surveyor-General; and although by that time the number procurable in the local market was somewhat lower than what had been ascertained to exist in the month of January, purchases to the extent of nearly Rs. 23,800 were made, and the instruments issued before the end of the financial year.
284. The number, class, and cost of the principal instruments purchased are as follows, viz.

285. The articles which form the bulk of the manufactures in the workshop, and the cost of their manufactures, are as follows :-

Nambs of Instrimints.			Number.	$\begin{gathered} \text { Cost of } \\ \text { mnnufacture. } \end{gathered}$
				Rs.
Boards, drawing	89	1,182
Chaius, mensuring	\ldots	...	219	2,145
Clinometers, wooden'	36	504
Compasses, magnetio, for plane-tables	\ldots	...	38	456
Glasses, tracing -..	6	289
Machines, map-printing ...	\cdots	...	13	696
Pins, for mensuring chains	6,000	1,000
Plane tables	164	1,622
Pluviometers	\ldots	-•	35	883
Rules, flat	\ldots	...	610	328
Do., sight, for plane-tables	. \cdot	...	247	1,235
Scales, metal -..	...	\ldots	81	850
Squares, optical	12	78
Stands for various iustruments	\ldots	...	177	1,914
Staves, levoling	25	375
Cases, packiug	584	2,784

286. A new lens-polishing machine has been constructed in the workshop. This machine supplies a want wiich has long been felt. Lenses which would formerly have been condemned as useless can now be restored and be made perfectly serviceable.
287. The total number of instruments repaired in the workshop was a little over 4,400 , and the cost of the repairs was Rs. 26,400 very vearly. The principar instruments repaired were as follows, viz.-

The number of instruments repaired was about 20 per cent less than that repaired during the previous year, but the defect in number is made up in quality; for the number of levels and theodolites (which are among the more intricate class of instruments passing through the workshop) repaired during the year under report was 274 , exceeding by 69 the average number of corresponding instruments repaired during the previous three years, although one of them, viz. the year 1878-79, was productive of an exceptionally large out-turn of work.
288. As stated in paragraph 241 of last year's report, three classes of articles in constant demand, in the manufacture of which no great amount of skill is necessary, had been manufactured by artisans in the town, at a cost of about Rs. 845, and endeavours were being made to extend the system. Two more articles, viz. frames for level staves and frames for optical squares, were added to the list of component parts which can be procured in this manner; and although a sum of Rs. 860 only was spent on this class of work, more could have been spent if this Department could have received timely notice of the unusual demands which were made on it during the last half of the financial year 1881-82.
289. The space available at present for the storage of instruments does not admit of a greater stock being kept than is sufficient to meet average demands; and as when an extra large supply of certain ciasses of instruments is wanted it is generally wanted urgently, it is very desirable that the stock kept ready for issue should be greater than is at present possible. A project for a new building has been sanctioned by Govermment, and it is believed that the new building is now being designed. When completed, some of the difficulties with which this Department has to contend should be removed; and the sooner it is ready for occupation the botter, for it is clcar that the work of the Department is increasing.
290. The profit and loss account of the workshop showed a profit of a little over Rs. 300 , the charges having amounted to Rs. 45,914 , whereas the valuo of the work done was calculated at Rs. 46,227. Last year, as stated in
paragraph 242 of the annual report, this account showed a loss of about Rs. 1,800 . In the year $1879-80$ a profit of Rs. 13 was shown, and as the loss in $1880-81$ was probably attributed by Major Riddell to the proper source, the results of the three years appear to show that the rates charged by the workshop are as nearly correct as is possible. The cost of the remaining portion of the establishment, including supervision, packing expenses, office accommodation, \&c., was about Rs. 19,320 , which may be considered to represent the expenses connected with the receipt and issue of about 53,500 instruments, valued at about Rs. 4,24,000.*

6.-THE TRIGON OMETRICAL SURVEY OFFICE.

291. The principal work of this office is the final reduction and publica-

Personnel.
Mr. J. Bond, Agsiatant Surveyor, 1at grade (irom lst July).
2 native writers,

Photozincographic Branch.

Mr. C. G. Ollenbach, Zincographer. C. Dysoll, Plotographer.

2 Native Draftsmen.
1 Assistadt Drultsinan.
1 Mnp-keeper.
Drawing Branch.
Mr. G. W. E. Atkinaon, Surveyor, 2nd grade.
Jifer Khan and 6 other Draftsmen. 19 Assistunt Draftsraen and Map colvurists.

Solar Photography.
Mr. I. H. Clarko, Surveyor, 2nd grade, and Solar Photographer.
Mr. C. F. Guthric, Assistant to ditto. tion of the triangulation of all parts of India, and the reproduction of the topographical surveys executed in the Trigonometrical Branch of the Department. The office being located at Dehar Dun, at a considerable distance from Calcutta, has e drawing, a photozincographic, and a printing brauch of its own. It is thus independent of all extraneous assistance in the matter of publication, excepting as regards the binding of its printed matter, which has to be done elsewhere, usually at Calcutta. The office has also a depôt of instruments and stores attached to it, chiefly containing the higher class of instruments appertaining to the Great Trigonometrical Survey, of which it has long been the hear -quarters office. It is now, and has for many years been, under the immediate and able superintendence of Mr. Hemessey, M.A., F.R.S., aided by Mr. Cole, M.A.
292. The more important calculations of the year were those in connection with-(1) the Southern Trigon, which couprises the whole of the principal triangulation south of $18 \frac{1^{\circ}}{\circ}$; (2) the observed latitudes; (3) the Assam Longitudinal Series and Assam Valley triangulation. Much assistance was also rendered in bringing up the field computations of the Eastern Frontier Series, including the principal triangulation, the Mergui base-line, the astronomical observations at Mergui and Moulmein, and the Burma secondary operations, all which were carried on with a view to facilitate the final reductions to be made hereafter. The Gilghit triangulation by Colonel Tanner was also computed, various tables were prepared for the details of the North-EastQuadrilateral, which are given in Volume vir of the final account of the principal triangulation, and some secondary operations were finally adjusted and reduced.
293. The reduction of the Southern 'rigon by the simultaneous method adopted for the three preceding Quadrilaterals was commenced last year, and has been completed this year, very satisfactorily, as appears from the values of the residual errors which are given in the appendix. The auxiliary figures now alone remain for adjustment.
294. The final reduction of all tho Astronomical latitudes observed up to date in counection with the geodetic operations of this survey is reported to have made good progress, "in keeping with the fact that under pressure to meet immediate wants only one pair of computers could be cmployed on the work, and that for little over half the year. The roducion, moreover, presents a considerable undertaking, involving, as it does, observations to

[^32]large groups out of 906 stars at 117 stations, so that more rapid progress under the circumstances was not practicable. Contributions towards the volume of latitudes, to be printed, have been secured to the extent of description by Lieutenant-Colonel Camphell of Stranec's zenith sector, with drawings of thesame instrument by Major G. Strahan." The final reductions depend on an elaborate analysis by Mr. Hemessey of the several values of the places of the observed stars, which are given in the various published catalogues of stars' places, sometimes with material differences between different catalogues.
205. Volume vil of the Account of the Operations of the Great Trigonometrical Survey was completed and placed in the hands of the book-binders by the close of the year under review. Volumes vir and viri are devoted to the several chains of triangles-sixteen in number-comprised in the North-East Quadrilateral, the great geodetic figure, which-speaking broadly-covers the area included, from north to south, between the Himalayan mountains and the parallel of Calcutta, and from west to cast, between the Central Indian meridian and the Eastern frontier. Volume vir gives full details of the simultaneous reduction of all the chains of triangles, an operation which was performed under the immediate direction of Major Herschel, R.E., F.R.S., during the absence of Mr. Mennesscy in Europe, and the details of five out of sixteen of the included chains of triangles. Volume vir gives the details of the remaining eleven chains. It was completed and placed in the hands of the book-binders by Christmas 1882. While these pages are being passed through the press, both volumes are being distributed to the principal scientific libraries and geodesists in all quarters of the globe.
296. It had been intended that Volume ix, the next for publication, should be devoted to the details of the astronomical obserrations for latitude and their final reduction; but delays occurred to prevent this intention from being carried out. Meanwhile considerable progress had been made by Lieutenant-Colonel Campbell in the preparation of the volume which is to give an account of the electro-telegraphic determinations of differences of longitude. The printing of this vulume has therefore been pressed forward. 200 additional pages have been printed, and the volume will probably be ready for issue by April 1883. It will be published as Volume in of the series.
297. Of the Synoptical Volumes, which give a précis of the results of the whole of the triangulation, both principal and secondary, for the requirements of topographers and geographers, Volumes vir, x, xi, xII, and xIII have been distributed, and progress has been made with the volumes of the Assam Longitudinal Series and Assam Valley triangulation, and of the Gurwani Series.
298. In the report for last year it was pointed out that the lines of spirit levels in the Bombay and Madras presidencies, which connect the tidal stations at Okha-near the entrance to the Gulf of Cutch-Bombay, Karwar, and Madras, present the anomaly of raising the southern points relatively to the northern, and that this is probably due to an accumulation of minute errors caused by oblique illumination of the bubbles of the spirit levels. It was also stated that the mean-sea level, as determined at each tidal station, would be assumed to be the datum to which the spirit levels should be referred in each instance, and that any discrepancy which might be met with on closing a line of levels at a tidal station (purely oceanic and not riverain) would be dispersed over the line and treated as an error gencrated in the leveling operations. In accordance with this arrangement, the lines of levels connecting Bombay, Karwar, and Madras have been adjusted simultaneously by the method of least squares; pamphlet No. 4 of IIcights in Southern India from the spirit-leveling operations las been prepared and is in press, and suitably amended issues will be made of the pauphlets previously published.
200. The shects 75 and 82 of the charts of spinit levels, which were drawn in 1880-81, have been printed and distributed, and four other shects are in hand. Additional data have also been collected from several districts in Bengal, and will serve to illustrate the sheets of that province, not issued hitherto from want of material. It is hoped that several additional elieets will be ready for publication uest year.
300. A new edition, the sixth, of the map of Turkostan is under compilation, in communication with the Foreign Department, to which proofs of the
map have already been submitted. It is intended to include all the geographical information received up to date from officers and explorers of the Survey Department, notably from the recent operations in Afghanistan, Colonel Tanner's surveys around Gilghit, and the work of explorer M-S- in and around Badakhshán, and from all other available sources-as Regel's (part of) Darwaz 1882 ; Schindler's Routes, Persia, 1880; Floyer's Beluchistan, 1882; Turkestan Military Circuit (Russian Topographical Department), 1880.81, \&c.
301. All the maps of the current year's work of the Guzerat and Cutch parties have been examined and published; a few preliminary charts of triangulation bave been compiled and published, but of course this work has been materially diminishing of late years, as the field operations have been gradually coming to an end; but a large amount of miscellaneous work has been executed. as detailed in the appendix. For the Forest Survey Department 17 maps and 1 chart were passed to press and published. The money paid to this office for maps and charts during the year was Rs. 743.
302. The Colby apparatus of compensation bars and microscopes and its appurtenances-including staudard bar A, with which comparisons of length have been made at all the base-lines--is always lodged for protection in the office at Dehra when not actually in use. Fourteen years having elapsed since the measurement of the Cape Camorin base-line, when it was last employed, it had to be carefully examined and put into good working order before being sent to Mergui for the base-line, which was measured there this year. This was done by Mr. Hennessey conjointly with Colonel Branfill.
303. The important duty of watching over the protection of the principal stations of the Great Trigonometrical Survey continues to be carried on. In all there are 3,472 stations in 338 districts, involving correspondence and accounts with each district officer. During the year 764 stations were specially protected or repaired, at an average cost of Rs. $4-8$ per station. Of the district officers who should have sent annual reports, about one-sixth failed to comply.
304. Mr. Heunessey reports that "rarious scientific duties continue to present themselves for discharge, with a growing tendency." Meteorological observations at Dehra and Mussooree are of long standing. These were taken during the year, as usual, and a daily weather-telegram was sent from Mussooree to the Meteorological Reporter to the Government of India during the months of April to November. Earth teuperatures have been observed daily, and the mean monthly results for about a year and a half will be found in the appendix. Actinometry was commenced in 1869 by Mr. Hennessey, who has subsequently also availed himself of favourable opportunitics when at Mussooree to observe: occasional measurements were made last year: four of the assistants, two being natives, are now able to use the instrument. Mr. Hennessey's results have been published and discussed in various numbers of the proceedings of the Royal Societs, and the sulject having attracted attention of the Solar Physics Committee, South Kensington, the Secretary of State has sent out Sergeant Rowland, R.E., to act under the Meteorological Reporter to the Government of India in taking a scries of observations at Lel, extending over two years or more. Mr. Blanford has placed the Serjeant temporarily under Mr. Hennessey, who is instructing him and arranging for the required work. As one of the miscellaneous items may be mentioned an appeal from Professor Schuster, Secretary to the Metcoric Committee, presided over by Sir William Thomson, for collecting evidence as to the presence of well-known meteoric components deposited as dust on the earth's suyface, for assistance in procuring desert sand and condensed water from untrodden snow-a request which has already been complied with in respect to sond, but has not yet been found practicable as regards snow.
305. The explorer M-S-having returned after nearly four years' absence from India with valuable traverses in and around Badakhshán, his journal and itinerary have been translated; and the illustrating sketch map prepared, which is given in scction xxvi of Part I of the present report.
306. Solar photographs for the Solar Ihysics Committee, South Kensington, were taken on every day of the year when the sun was visible: invisibility occurred only to the extent of 10 per cent, against 15 in the year previous. Solar features appeared on cvery day of visibility, besides that a remakable exhibit of large spots occurred in April. The spots were
depicted in a daily series of negatives, fortunately without any break. The photoheliograph in use is the old instrument, giving 4-inch images of the sun: for a slort timo the instrument was employed with an onlarging apparatus giving 8 -inch images; but intimation being received from General Strachey that the Astronomer Royal requires 4 -inch negatives for the measuring apparatus at Greenwich, a reversion has been made to the swaller sized pictures. The new large photoheliograph for taking 12 -inch negatives has been recoived safely. The observatory for its accommodation is now well advanced, and it is expocted that the instrument will shortly be in working order.*

[^33]Summary of Out-turn of Worl executed by the TRIGONOMETRICAL PARTIES
during the surney year 1881-82.

Dhecrition op Ditails.	$\begin{gathered} \text { Homlnyy Party, } \\ \text { and } \\ \text { thicollite. } \end{gathered}$	Eastern Prontier Series, $24^{\prime \prime}$ theololite.	spiritleveling operations,	'Total.
Number of principal stations newly fixed	8	7	\cdots	15
" , trinngles completed	7	8	15
Length of principal series in miles	15	9.4	-.....	109
Area of principal triangulation in square miles ...	21	1,667	1,688
Average triangular error in seconds	047	$0 \% 3$
", probable ecror of angles in seconds03	-06	\ldots
Astronomical azimuths of verification ...	3	1	4
, latitude	4	3'	7
Number of principal stations selected in advance ...	\cdots	10	10
$\begin{array}{cccccc}\text { B of platiorms constructed for principal sta- } \\ \text { tions ... } & \text {... }\end{array}$	'..	7	.'.	7
Number of principal stations placed under oficial protection and protected	. $\cdot \cdot$	11	11
Number of principal stations the clements of which have beon computed ...	'	17	\ldots	17
Number of secondary triangles of which all three angles have been observed ...	8,	\ldots	8
Area embraced by triangulation to promiaent points exterior to priucipal triangulation and in square miles	282	3,062	3,344
Number of points fixed by intersection but not visited	11	37	..,	48
Number of stations and points, the heights of which have been determined	9	35	9	53
Number of miles of rays and pathmays cleared'.	93	23
," of preliminary charts of triangulation ...	1'	1
" of hill tops cleared of forest or jungle	7	-•...	7
of miles leveled over	23	...'	448	4.71
$\begin{aligned} & \text { of permanent bench-mark stones embed- } \\ & \text { ded } \end{aligned}$	2		24	26
Number of trigonometrical stations connected with lines of levels	4	11	15
Number of other permanont points fixed as beachmarks	6'	286	292

[^34] Oxing the beighte of 124 bench-marks, of which 57 wero oll posts speciully embuddud, the remulnder boing on treas and other
previously gisting objects, proviously existing objects,

Nummary of Out-turn of the TOPOGRAPHICAL

PARTIES between the 1st October 1881 and 30th Scptember 1882.

Abstract according to Jurisdictions.

Drputy Survetor-Genbral's Office,

PARTIES beluecn 1st October 1881 to 30th September 1882.

Districts completed since last Report.

APPENDIX.

EXTRACTS

F ном

THE NarRative reports 0r THE EXECDTIVE 0FFICERS

IN Cftarge of

THE SURVEY PARTIES AND OPERATIONS.

Extrant from the Narvatice Report, dated 27 th Octo ${ }^{\prime}$ er 1882, of Liedtenant-Colonfl B. R. Branfill, B.C., Deputy Superintendent, Surcey of India, in charge Bombay Party.

The Eastern Sind series having been completed by the Bombay party during last field season, and the computations connected with it very nearly so during the recess, I received instructions to examine and prepare tho base-line measuring apparatus for the Mergui base, which it was determined to measure during the field season of 1881-42.

In carrying out this duty at Dehra, I received every assistance from Mr. Hennessey, who placed the workshop resouroes of the Dehra office at my disposal and gave me all the information and instructions requisite. The apparatus was found to be worn and shaky, but was put into efficient working order, cleaned and adjusted throughout by the middle of October, when it was packed up and despatched by rail to Calouttn.

The Indian Government steamer Celcrity land been provided to aid in pushing on
Government steamor Celerity.
the triangulation to the southward of the base-line in the Mergui Archipelago, and the whole of the Bombay party, with its ordinary camp equipage and triangulating iustruments, proceeded in this vessel from Calcutta to Raugoon on the 5th November.

As there was no stowage room for it in the Colrity, the whole of the bese-line apparatus had to be despatched by the ordinary coasting stenmer of the British India Stenm Navigation Company, which left on the 4th November bound for Mergni, accompanied by Mr. Atkinson and two natives to look after the measuring bare and instruments.

In view of the shallows and sunken rocks with which the Mergui Archipelago

A steam-launch found to bo very Aesirablo. abounds, and the great draught of water of the Celerity (uearly 12 feet), which would preolude any near approach to the shore generally, and prevent her entirely from traversing many of the ohannels, Captain Searle, Superintendent of Marine, strongly urged that we should ohtain the use of the steam-launch Moulmcin, which was being sent in tow of the Celerily from Caloutta to Rangoun for the use of the port of Moulmein. He also urged this course as a matter of great economy in the expenditure of coal, inasmuch as the Celerity could carry comparatively little fuel for her own relatively large oonsumption, and the party would be deprived of the aid of steam power entirely whilst she was proceeding to and fro to recoal, whereas the stenm-launoh on!y consumed about onetenth the amount of fuel, and was actually more suitable for the many coasting trips that were necessary in visiting the survey stations. Moreover, the steam-launch could be manned and worked by the crew of the Cclerity without any extra expense.

On the loth tho Celerity put into Rangoon, the last port where there was a depot of

Stoam-launch obtained at Rangoon.

 fuel to recoal, and whilst there, with your sanction, I applied for and obtniued the use of the stenm-launch for the ensuing two months at the rate of k s. 500 a month. I am glad to state that this arrangement, in the opinion of those engaged in the operations, proved eminently convenient and economical.On the 12th November the Celerity left Rangoon, and reached Mergui on the 14th,
Tho party renches Morgni. the day before the arrival of Major Rogers and the Erstern Frontier and Burma parties, with which the Bombay party was to co-operate.

No time was lost in making the necessary disposition of the party for commencing

Plan of oporations.

 the triangulation. The plan of operations deoided on was that the Bombay party should complete the trinugulation near the base-line, including its connection with the Eastern Frontier series, and any verificatory and secondary triangulation that might be requisite before taking up the necessary astronomical cbservations, whilst Major Rogers with the Burma partien extended the triangulation to the southwards as far as possible until the middle of January, when both parties were to assemble and proceed with the measurement of the base.The siganl-men were sent off to their stations by boat on the 18th of November,
Triangulation commenced. and a complete observing party with Troughton and Simma' two-foot theodolite No. 1 on the 19th to King's Island for the hill station of Kapa Taung, where fiun observations were commenced on the 24 th and finished on the 27th.

Mr. Atkinson meanwhile having arrived with the base-line appnratus at Mergui on
Arrival of baso-lino apparatus. the 23 rd, I sailed back thither to nscertain that the equipment was all right, to see it properly stowed, and to organize, instruct, and start the leveling party, all whioh was accomplished by the 5th of Leceling party strnted. December, when I resumed the final observing at Pawo (island) station, whither the main party had been transported in the interval. I may remark here that all the travelling had to be done in open, country sailing bonts, and that it was n contimual souros of incouvenience, delay, nod suriety, pragress depending entirely on fair weather with favouring wind and tide.

Completion of the principal triaggoln tion.

The final observations were oarried on henceforward
At Kapa Taung H. S., between 24th and 27th November 1881. (Leveling party organized and stnrted in this interval.)
At Pawo H. S., between 5th and 7th December 1881.
At Toung pilá or west end of base-line T. S., between 9th and 11th December.
At Natlaintaung H. S., between 13 th and 18th Deoomber. An azimuth was observed at Natlaintaung to a pair of circumpolar stars.
At Minthantaung H. S., between 21st and 27th December. An azimuth was observed at Minthantaung to α Urece Minoris (Polaris).
At Tatoung H. S., between 28th and 29th December.
Δt Tauribiye or east end base T. S., between 30th and 31st Docember. A set of circummeridian star observations for latitude was taken on the nights of the $1 \mathrm{st}, 2 \mathrm{nd}$, and 3rd January 1882 to eleven pairs of stars.
At Sandnwnt H. S., between 5th and 8th Jnnuary. A set of ciroum-meridian star observations was taken at Sandewat on the nights of the 5th, 6th, and 7th January to thirteen pairs of stars.
The west end of the base-line was again visited and a set of oircum-meridian star observations taken for latitude to fifteen pairs of stars, on the nights of the 10th, llth, and 12th of January, and also a set of ciroumpolar star observations to a Ursco Minoris for azimuth, between the 11th and 15th January, after which Minthantaung was revisited and oircum-meridina star observations for latitude taken on the 16th, 17th, and 18th January to fourteen pairs of stars.

Finally a set of oircumpolar star observations for azimuth was observed at the east end of the base-line, between 23rd and 30th January, by Major Rogers, whilst the mensurement of the base-line was being begun.

The above atatement includes all the observations taken with Troughton and Simms' two-foot theodolite No. 1.

Meanwhile Major Rogers, with the Eastern Frontier and Burma parties immediately Progress of the tringulation to the under him, was engaged in prosecuting the triangulation to southward under Major Rogers. the southward of Mergui through the archipelago.
No principal stations having been prepared or definitely selected during the previous season, his first object was to lay out the series, build the stations, and clear the rays, \&c. He aocordingly, as soon as possible, after reaohing Mergui, embarked in the Celerity with the whole of his establishment in tow, and, dropping parties at the stations to be built first, proceeded to reconnoitre the arolipelago, laying out the series of principal triangles as he went.

With the aid of the stenmers, he visited 16 islands and selected as many stations, extending the approximate series 170 miles, as far south as latitude $9^{\circ} 20^{\prime}$, and returaed to Yajeo, the first station for observing at, within a month after starting, by the 15 th December.

The final observations were carried on rapidly, overtaking the building and olearing parties by the 15th January, when the usual hazy weather had begun, and all had been done that could be aocomplished in the time with the means available. Seven new principal stations were built and observed at, embracing an area of 1,667 square miles, extending the seriss $9+$ miles to the southward.

Detail of Triangulation under Mujor Rogers.
The final observations were completed at the undermentioned stations as follows :-
With Waugh's two-foot theodolitc No. 1.

With 12-inch theodolite by Troughton and Simms.

At West Lampee H. S., between 13th January 1882 and 14th Jnauary 1882.

With 12-inch theodolite No. 181, Troughton and Simms.
At East Lampee H. S., between 14th January and 15 th January 1882.
The observations at this last station were taken by Mr. L. Pocock, all the rest by Major Rogers.

A great number of observations were taken to fix the islands and bill peaks of the archipelago ; many of the penks, however, were so deneely overgrown with forest as to be hardly distiuguishable, but the objects fixed will be of value, as geographioal points.

Whilst the last series of latitude observations was still in progress, Major Rogers with the whole of his triangulatiug party returned from the

sonthward to take part in the measurement of the base-line. The star observations were somewhat hurriedly brought to a
close on the 19th of January, and the whole party assembled at the enst end of the base on the 22nd.

The steamer Celerity and the steam-launoh, togethor with all the country boats that were not absolutely required, were now dismissed, and all the hauds that could be spared were disoharged and sent in the disoarded boats to Moulmein.

During the month of December the base-line apparatus had been oonvejed by degrees, whenever boats had been available for the purpose,

Preparatory arrangenents for tho

 baso-line. to the east end of the base, where there was a landing place penter, amith and two or three adill most convenieat spot or encamping on. .one car putting together the treetles, tent framos, \&o., \&e., so that everything was just ready in good time. The ground over whioh the base-line runs had been marked out and roughly leveled during the previous season, but beyoud olearing the side drains little or nothing could be done to it before the middle of this January, owing to its being under water or too wet to be dealt with. The work, however, was now pushed on rapidly, and no inoonvenience was experienced from the delay. The measuring apparatus was put into working order, and the members instructed and practised in the manipulation of the instruments as soon as possible. The comparisous of the compensation bars with the 10 -foot standard (A), those of the 6 -inch microscopes with their scales and those of the runs of the miorometers of the comparing microsoopes, k and $/$, with the staudard foot ($1 /$), were taken on the 25th and 26th of January.The actual measurement of the base was coramenced on the 27 th and went on slowly, but steadily, in the usual manner without any mishap. The measurement proceeded from east to west, i.e. from
who were south of the bars, facing north, the tongues of the The measurement of the base-line. right to left of the obscrvers, who
bars pointing also in that direction.

Distribution of work.
After the second day's work, the observers and instruments were arranged as follows, and this order was maintained to the end :-

No. 1β Major M. W. Rogers, R.E., at the boning instrument 21 feet in rear of the set of bars;
," 2α Lieutenant the Hon'ble M. G. Talbot, R.E., at the W. mioroscope on the rear end of compound bar A, urigin of the set ;
3Δ Mr. C. P. Torrens at the R. mieroscope on the advanced end

, of oompound bar \mathbf{A}.
" 8 H ", Lt.-Col. B. R. Branfill ", V ", \quad V \quad, \quad E.
" 9 Moung Shony Gyoke, with a second boning instrument, laying the trestles in advanoe.

No. 2 had charge of the last fised register from the begianing of the set until he had seen it safely covered up by a register box without being touched. It was his duty aleo to haud the 'director' in passing down the final alignment. 'The temperature of the two components of compound bar B. and of the air was registered by No. 3 ; Nos. 4, 5 , and 6 k kept up the field-book in triplioate, making all the entries independently as they were celled out, set by set, by the various observers: thus, immediately after the fiual alignment and before the final length was passed down, whilst the advanoed register was being adjusted aud the three recorders (4,5, and 6) last named were otherwise unemployed, No. 3 gave out the temperatures which he had just recorded, and No. 2, the height of the rear and advanced ends of the set above the registers, which had been entered in a note-bools by himself and No. 8, who finally proclaimed the completion of the set and the particulars of the (\odot) marld defining the terminus of the set. The spare time of No. 7 was spent in luoking after and oorrectiug the length and alignment of the obain-men and trestle loyers in advance. No. 8 was fully occupied in directing and aiding the approximate focus and the approsimate alignment-besides the laying and observing the register at the terminus of each set.

On the 7th of February, the 9th day of the measurement, the centre of the base Two days inv.comparisons takon at was renched, and the two following days were spent in
contro of tio hnse. comparing tho oompensation bars with the standard.
The meneurement was resumed on the 10th and brought to a conolusion in 5 days (at
Complotion of the mansurement. the rate of over 28 sets per day) on the loth of February, 36 sets were done in 9 working hours, at the of the racasurement. On the 14th February Rapid progress. quickest having occupied only 12 minutes, the slowest 19. with the same npparatus. It is believed that this is the largest day's work ever done

The 258 th set nad a half fell $3 \cdot 22$ feet slort of the (\odot) mark defining the west end of the buse, which quantity was measured off on Cary's 3 -foot brass sonle.

The first (enstern) half of the base was over comparatively good firm ground, but
Ronark upon the soil. the last (western) half was for the most part over n clayey flat that was much cracked by the heat, and very shaky. It was found neeessary to fill the orevices round the registers with pure dry sand, and to plaoe the registers in pits filled up to ground level or higher, with sand; and every preoaution was taken to preserve them intact and unmoved from set to set.

Two days bar-comparisons at close of the measurement.
of bar-comparisons at the west end of the base.
The triangulation and the line of levels having both been completed and arrangements made for closing and protecting the station buildings
Conclusion of the operations and return to Calcutta. in the vicinity, and for delivering them to the looal officials, the majority of the party proceeded to Mergui and took passage by the first steamer for Calcutta, where it arrived on the 7th of March.

The theodolites and trigonometrioal instruments were returned into store in the Disposal of the instruments, \&o. Mathematical lnstrument Department ; the camp equipage was stored with that of the astronomioal parties at Chinsurah ; and the bnee-line instruments and apparatus were sent to the Great Trigonometrioal Survey Office at Dehra Dun.

The entire out-turn of trigonometrical work accomplished by the combined parties
Entire out-turn of woric engaged in the work comprises 15 triangles, fixing 15 new stations, covering an area of 1,688 square miles, and extending the series 109 miles southward of the point reached the previous seasnn, with a very oonsiderable number of secondary (topographioal and geographical) points in an area of 3,344 square miles exterior to the principal triangles.

In addition to the above, and besides the mensurement of the base-line, four determinations of the astronomical azimuth were obtained near Mergui, and seven astronomical latitudes-four of the latter about Mergui and three about Moulmein.

A line of levels was exeouted 23 miles in length between the base-line and Mergui, where it is intended to establish an observatory for tidal investigations. In the course of this. work ten permanent bench-marks were connected, four of which are trigonometrioal stations.

I am glad to report that the oonduct of each and all the assistants was unexoeptionally good throughout.

The health and working capacity of the natives was on the whole very good, but a Heallh of party. few of those who had remained at Moulmein during the Several of the Bombay men succumbed to the enervating effeots of the climate aud food, and bave since died.

Note on the Astronomical Asimuth and Latitude Observations albout the Mergui Bave-line.

Astronomical observations for the determination of the azimuth and the lntitude
The astronomical observatimns. were required at both ends of the base-line, and also at other principal stations of the series in the veighbourloond, in order to obtain a good mean value of these elements, that should be as free as possible from the disturbing effect of any abnormal local attraction upon the plumb line at auy one station.
31. The hill stations of Natlaintnung and Minthantaung were selected for the extra

Tho azimuth stations. azimuth observatious, on the north and south sides of the base-line respeotively, ns being apparently less likely to be affected by any irregularities of local antraction in an east or west direction than the other stations in the immedinte neighbourhood.

The observation of one circum-polar star at both elongntions was found to be impractioable. It was therefore intended to observe a pair of stars at their opposite elougations. Owing to oloudy and hazy weather this was also found to be impracticable after the first azimuth, and we were obliged to be content subsequently with observations to α Urece Minoris (Polaris) at one (the western) elongation only; takiog double the usual number of observations with two observers. one of them at the telescope and the other at the levels and microscopes; this was found to be quite feasible.

Cirrum-meridian Latitude Observations.

Circum-meridian star observations for latitude were taken at the pame stations as azimuth obeervations, with the exception of Natlain-
('ircum.meridian star observations for latitule. tnung, at which it was surmiaed that there might probably be no nbinormal excess of local deviation of the plumb line in a northerly direction. and the principal station nest to the northward, Saudawat H. S., was prelerred as being less ohjectionably situated on that feore

The principal slinre of these observations, ns far as the eetting the te esonpe and making tho interseation of the star was undertaken by myself, nud. in the case of the Minthantnung nhesrrations, I took them alone as Lieuteuant Talbot was engaged ou other duties, preparing tho base-line, \&e.

The observations were takon throughout in the ordinarg observatory tent belonging Obserpatory tent. to the party, the frame and top of which had been divided in two in the centre, and the halves separated so as to leave a oomplete meridional aperture 8 or 10 inches wide from horizon to horizon through the zenith. The junetion of the two halves was made by thin cross pieces of iron at the peak of the teat frame, and at intervals down the fly. The aperture was corered by a separate strip of cloth (or purdah) which could be attached or removed at will, nnd this arrangement proved sufficiently oonvenient without adding appreciably to the weight or portability of the tent.

Forty-seven stars were selected from the Nautical Almanac and from the Greenwioh seven-year Catalogue for 1864, in pairs of nearly efual north and south zenith distanoe ranging between 9° and 38°, and in right ascension all between 1 hour and 8 hourn, so as to be suitable for observing about the meridian between eunset and one o'clock after midnight, during the month of January. My instructions were to observe ten pairs of stars on tliree nights each; but as I was uncertain of the value of some of the stars' places selected from the old Greenwich seven-year Catalogue, I endeavoured to secure twelve or more pairs, and succeeded in obtaining 11 pairs at the east end, 13 pairs at Sandawat, 15 pairs at west end, and 14 pairs at Minthantaung. We had no experience or previous praclice, but after a little while the routine became easy and tolerably quick : it was as follows:-

The 24 -inol theodolite having been adjusted during the day, was examined and
Modus opernndi. leveled about sunset, when the transit of a high star was observed on the meridian, to determine the error aud rate of the Sidereal oluronometer. The recorder was provided with a table of the selected stars showing their aspeot, altitude and zenith distance, the chronometer time of their culmination or transit, and the maximum interval therefrom, within which it was requisite to observe them, so as to aroid, if possible, the necessity of using the second term in the formula of reduction. The intention was to observe the star as near to its culmination as practicable.

Marks were made upon the circular lamp.tnble by which the telescope was very readily laid approximately in the meridian with either a north or south aspect, and it was then set to the altitude of the star about to be observed. A few seconds before the proper time for the first observation the telescope, set to the proper altitude, was moved in azimuth from the meridian to meet the star, and the instant of completing the intersection at the proper part of the horizontal wire of the telescope was called out by the observer and noted by the recorder, who was watching the chronometer, and who read out the time registered, which was theu checked by the observer looking at the obronometer. The level was then read and recorded, and lastly, the readings of the vertical limb, either the altitude or zenith distance, directly, by means of the two vertical microseopes (G and H).

The telescoje wne now turned over 180° in altitude and the same in azimuth, so as to change the face of the instrument from east to west, or rice recrsa. The telescope being again set to the zenith distance or altitude of the star on the meridian, the secoud observation was made as near as might be to the time of its culmination, the time level, and vertical mioroscope readings being recorded. A repetition of this observation followed as quickly as possible, alter which the setting of the instrument was again reversed and a repetitiou of the first olservation taken. This completed the set of four observations to a star for the night, and the instrument was immediatoly set ready for the nest star, barometer and thermometer readings being taken frequently in the intervals.

The even and steady illumivation of the limb by the hand lamp was found to be a difficult and dilatory process, and a fised light upon the graduations to be read was a grent desideratum.

With two observers the average time occupied in observing an entire set was nearly $5 \frac{1}{2}$

Tine occupiod by a set of obsorya. tions. minutes, between a minimum of five minutes and a maximum of 7 minutes; but with only one observer, an average of $6 \frac{1}{2}$ (between 6 and 7 minutes) for each set.
Towards the conclusion of the night's work another trausit was taken for error and rate of the clock.

After some little praotice it was found ensy enough to observe 30 stars with all the requisite subsidiary observations in half a niglit, between sunset and midnight, nud if an orlinary two-foot theodolite were specinlly adapted for this kind of worls by a nore suitable level, steady illumination and other improvements, a greater number might be obtained, under ordinarily favourable ciroumstances, without difficulty.

I ostimate that seven groups of latitude stntions, one degree apart, and three stntious Estimato of progross for one seasan. wear to one another in each group, might be observed in a senson. Or if only one station were observed in a ciugle locality, twelve latitudes might be determined extending over an aro of as many degrees of the meridian.

Durng the observations on each night the horizoutal collimation error was deter-

Collimation and index error delernined. mined by menus of a good referriag-mark lanip signal, and the zero or iadex error of the vertical microscopes likewise.
The value inc aro of a division of the levol sunles wne determined by observations for the liun of terel.
purpose, takeu several times during the operations; that of the vertical nxis level was found to be almost identional with the value in ordinary use, previously determined.

The barometer readings were taken by an aneroid which was compared with a Barometer. George's portnble mercurial barometer at both the highest and lowest stations visitod, and corrections applied acoordingly. The oorrected barometer readings were projected and a curve for each night drawn, whenoe the correot pressure corresponding to the mean time of observing eaoh star was taken and entered in the augle book.

Thormometor.
The corresponding temperature was interpolated directly from the original observations.
From these interpolated values a mean refraction was computed for each star on Rofraction. eaoh night from Bessel's refraction tables in use in the Great Trigonometrical Survey computing office.

Extract from the Narrative Report, dated 4 th October 1882, of Major M. W. Rugers, R.E., Deputy Superintendent, Survey of India, in charge Eastern Frontier and Burma Parties.

I took over charge at Bangalore on the 20th September, and on the 26th the party left recess quarters for Burma and reached the field bead-quarters at Moulmein on the 12th Ootober.

As it was your intention to have a base-line measured at Mergui during the senson, it became necessary for me to arrange for labour, supplies, and boats, not only for my own establishment, but for that of the base-line party under Lieutenant-Colonel Branfill, which was to go direot from Calcutta to Mergui.

The rains had not ceased in Burma on my arrival there, so I had ample time to make all arrangements, and the party left for Mergui on the 12 th November, arriving on the 15 th.

Colonel Branfill in the Indian Government steamer Celerity, had arrived the day before; so having handed over his men and boats to him, and arranged for the stornge of the Government property, I was then ready to carry out my part of the season's programme, which was to extend the triangulation as far south as possible before the weather becane too misty for observations, when it was arranged that the party should return to Mergui and aid in the meneurement of the base-line.

You had obtained the Indian Government steamer Celerity for the use of the triangulation, and Colonel Branfill had also obtained the loan of the ateam-launch Moulmein; in addition to these, I had two open cargo-boats and a decked schooner for the carriage of men and stores.

No stations had been selected or built in advance, so the first thing to be done was to push on this part of the work: I therefore landed Messrs. Pocock and Potter on the two islands where I proposed plaoing the first stations in advauce, and I then proceeded in the Celerity to make a thorough inspectiou of the Mergui Archipelago with a view to selecting stations for the triangulation as far south as the end of British territories.

I visited eixteen islands during my expedition, landiug on several of them at more than one place in order to find water aud the best place from which to commence the ascent of the hills.

Sisteen stations were selected, extending the series from latitude $11^{\circ} 40^{\prime}$ to $9^{\circ} 20^{\prime}$, or about 170 miles. Two stations fixed upon were not visited, and two islands visited were rejected.

Having completed this part of the work, I returned to Yajeo H. S., and commenced the prinoipal observations there on the 15th December.

During the time I was observing, the building of stations and cutting of roads were puahed on vigorouely by Messra. Pocock and Potter.

By means of heliotropes and the ordinary Morse Code, I was able to communicate with them and the steamer, and they with each other, so that we were always acquaninted with the progress of each party's work, and I was able to utilize the steam power, not only for my own observing party, but to tranefer the assistants and their mon from one island to another, whenever they required it.

The steam-launch was most useful in taking me to several stations which the stenmer could nit have come near owing to the shollowiess of the water, and I used her on this work whilst the Celleity, went to Mergui for coal.

There was nothing partioular to note in the observations themselves, save that on the moraing of the 31 st December, whilst observing at Kisseraing H. S., an earthqualke occourred which, though hardly perceptible to a by-stander, was at ouce detected by the movement of the levels of the great theodolite and by the heliotrope (to which I happened to be observing at the moment), rising and falling in the field of the teloscope.

The observations were carried on until the 15th January, when it becnme necessary to close work in order to reach the base-liue at the time ngreed on: even before this the haze, whicl last yenr had so impeded Captaiu Hill's observations, began to give trouble; and under any circumstances I doubt if observing could have been carried on beyond the end of the moith, nnd as it was the recognition of intersected points was most difficult during the last ten days.

The observing season here may be said to oommence on the 15 th November and eud on the 15 th Jabuary, and even this brief time is liable to be eurtailed by heavy raine at the commencement and premature setting in of the haze at the close.

It is therefore most necessary that no hindrance should occur through delays in travelling, and I can only wonder how any work at all was done in the previous season, when days were spent in drifting from station to station in open boats. Thanks, however, to the power of steam, we were able, in the very brief time we spent on the triangulation, to accompliah tho following work.

Observations were taken with the $24^{\prime \prime}$ theodolite at seven principal atations, and with the $12^{\prime \prime}$ at two more, adrancing the series 94 miles, and fixing seven new stations embracing an area of 1,667 squaro miles.

Seven new stations were built on the islands. To reach these stations, whose heighte above the sen ranged from 500 to 1,500 feet, 23 miles of pathway had to be cut through most dense forest jungle, a portion in one case having to be made over mangrove awampe, by folling trees and making a couseway. The hill tops had to be oleared of forest, and in some oases rays had to be cut to enable the adjacent stations to be seen.

With this large amount of work to be done at each station, it was only to be expeoted that tho observations should catch up the preliminary operations, and consequently no stations have been built in advance.

In future operations, to ensure that there may be no delay from this cause, there should be two building parties ; and in addition, during the latter part of the season, when the haze prevents observing or selecting, the whole of the party should be emploged in building and olearing.

The party returned to Mergui on the 18 th Januarry, and after having paid off and dismissed such men and bonts as were no longer required, it was moved to the base-line and plooed at the disposal of Lieutenant-Colonel Branfill for the measurement.

During the measurement, arrangements were made for covering and protecting all the stations of the eeries, which was done; and although no stations, save those on the Mergui island, could be plaved under official protection, the inaccessibility and descrted nature of the country is such that I do not consider the statious to be in any danger except from natural causes. After the completion of the base-line the party left for Moulmein, where they arrived on the 25th February.

I then received your instructions to observe nstronomical latituder at Moulmein, and I therefore selected three stations of the triangulation near Moulmoin and proceeded to observe for latitude at the first of them-Moulmein H.S.

As I foresaw that owing to my tidal inspection work I oould not arrange to observe at nll the stations myself, I carefully instructed Messss. Pocock and Potter in the use of the $24^{\prime \prime}$ theodolite and the method of observing circum-meridian altitudes, and also in all the necessary computations for selecting suitable pairs, \&e., and worked with them for two nights, until I was satisfied that they might be trusted alone. They observed for latitude at Martaban H.S. and Toung-zun H.S., whilst I left Moulmein for Rangoon and Port Blair.

Ou completion of the latitudes the party left Moulmein for Mussoorie, under the charge of Mr. Potter ; Mr. Pocock having been ordered to join the Mysore party at Bangalore.

I received every assistance in his power from Captain Butler, Deputy Commissioner of Morgui.

Captain Hothan of the Indian Navy and the officers of the Indian Government stenmer Celerity did everything in their power to nid me in my work, and to their cordial coooperatiou I am greatly indebted for the good progress which I made in my observations.

The triangulation this year was entirely on the islands of the Mergui Arohipelago.
The islands may all be described ns high aud preoipitous, the smaller ones rising sheer out of the sea, the larger ones having steop valleys between their various peake, but no flat ground of nay extent.

Towards the north, the islands are fringed with n belt of mangroves, some two or three miles in width, the only acoess to the mainland being up the larger creeks at high tide (the tide here rises from 16 to 18 feet). Such as this is the large islaud of Kisseraiug and the enstern side of Domel: whorever there is a small valley with fresh water there are nearly sure to be mangroves at its mouth.

The islands south of $11^{\circ} 20^{\prime}$ have stretches of fine sandy beeoh, and in many cases good water coming out of the hills and flowing over the sand into the sea.

In Davis Ieland, latitude $9^{\circ} 50^{\prime}$, there is almost a small river coming down from the hills with a fine waterfall, and in the interior of Kisseraing another was found. The peaks on many of the islands are of a oonsiderable height, many being over 1,000 feet and several over 2,000 .

With no exception, the islands are covered with dense forest, with thick undergrowth and creepers in every direction, a thorny kiud of oane being one of the most common. This makes it very difficult to penetrate to any distanoe, as every step of the way has to be cut through the undergrowth.

The eoil is very rielh, consisting chiefly of leaf mould, and it remains moist all the year round, as it receives an immense amount of rain, aud the thiok foliage prevents the sun penetrating during the hot weather.

The density of the forest may account for the few beaste aud birds whioh are seen. Monkeys are plentiful, coming down to the beach at every low tide to ostoh orabs and shell fish in the mud.

I saw tracks of wild pig, deer or tapir, loopards or some animal of that desoription, and on Forbes' Islaud, what seemed to be the footsteps of a rhinoceros.

Jungle fowl, imperial pigeon, curlew, horn-bills, lsing-fishers, and on Davis Island one pair of suipe, were the only birds I eaw; but it must be remembered that 1 have only penetrated, at the most, half a mile into any of the islands except aloug the pathe cut to the stations.

The trees are in many aases very large and high, having a great length of trunk without any branches, apparently devoting all their strength to reaching the upper air and suu-light as soon as possible. One tree, which had been blown down on the islaud of Kisseraing, measured 116 feet from the ground to the beginning of braches, and 227 feet in all.

Fish are very plentiful, and during the cold weather there are many temporary fishing villages established on the northern islands by men from Mergui and around, who dry the fish for export to Rangoon.

Trurtle are met with on most of the islands, but all I saw of them were the remains of two very fine ones, which had served overnight as the meal of some of the wild men of the islands.
'The archipelago is uninhabited save by the fishermen above mentioned and the roving tribes of Selungs or sea-gypsies mentioned by Captain Hill in his last report. Of these I met several, and as a rule found them by no means everse to communication, rowing up to the steamer or steam-launoh and getting on board the latter when asked. These were in the southern islande, where they mostly live. The only ones I saw on the northern islands fled in such haste that they left most of their boats and property behind.

At Lord Loughborough's Island, in laticude $10^{\circ} 25^{\prime}$, they took us to their temporary villige, where we were received by the whole community in a very friendly way. The village was on the beach, just above high tide, and under the shade of the trees; it consisted of a few platforms of light wood floored with split bamboos and roofed with the leaves of the neepá palm.

I'lue wen were as a rule a fine set, and extremely ugly, not at all like the Burmese; the women were small and also ugly. They were all dressed decently, but not superabundantly, and many of the men wore necklaces of glass beads.

They had a little rice and paddy, and a large quantity of evilly smelling shell fish and sen slugs drying in the sum. These latter they collect for sale, and also a large shell, which takes a beantiful pulish and sells at Mergui for Rs. 8 per 100. It is used in England, 1 believe, for button-making.

Their boats are very light and fast; the lower portion is Ω single tree, the sides being heightened by bamboos or some kind of fibrous palm, which are woven in and out on uprights, projecting from the two upper edges of the boat.

Their oars are beautifully made, and they use them with great skill, making their boats fly through the water. They have also masts and a sail of palm leaves. They are very clever in weaving mats, bags, \&c., but I could hardly get any, as when I visited them it was not the mat-making seasou, which is the monsoon, when they can do but little fishing. They have some fine dogs, which they employ in hunting the wild pig in the islauds, the weapons they use being the ordinary hog-spear.

There was a Malay trader living at the village I visited, who traded with them for their shells, \&c., giving them cloth, rice, and beads. He said that he came from Penarg ; he had a house a little larger than the rest, in which, besides his stock in trade, were such out-of-place articles as a violin and a bottle of lavender water.
Λ few of the Selungs speak a little Burmese, and thus we were enabled to talk to them aud get a few of their words, which I give below spelt phonetically :-

Sea	Okel.
Shell	Keniyak,
Boat	. Kakiug.
Tree	Kíý.
Mountain	Delai.
lice	Pêlee.
$O_{\text {gster }}$	Geetap.
Firesh water	Oyem.
Village	Alamplan
Taddy	Par.
Malay	Ba-tak,
Dog	Oyee.
Coral .	Kalong.

At present there is no communication between Mergui and any of the islands, none being necessary, as they are nearly uninhabited aud produce nothing. The consting steamer from Rangoon to Penang passes through a portion of them in going between Mergui aud Maloywoon or Renoung.

I visited this latter place, which is on the Siamese side of the mouth of the Pakchan river, and may become a place of importance if the canal throngh the isthmus of Kran is ever carried out. At present it is a prosperous village, inhabited catirely by Chivese with Malny coolies, and owned by a so-called Raja, who is a fine looking Chinaman, holding the mines under the Siamese Government. The mines, which produce rich tin ore, in appearance like dark gravel, are a few miles off; the smelting works aro close to the village mid the Haja's house, which is a fiue one of the Iado-Euglish style. The smolting is carried on in rather
primitive fashion ; the blast is produced by huge bellows like a syringe, with a man working the piston-rod forward and baok.

The Chinese seem to be well-to-do, and have good gardens. The day I was there was their mail day, the consting steumer from Penang communicating with China having just arrivod, and many households seemed to have received a box from China, which they were opening in front of their doors with great pleasure and excitement.

Extract from the Nimpatice Report of Major Charles Strahan, R E., Depuiy Superintemdent, Survey of India, in chargc No. 1 Topographical Party, Guatior and Central India Survey.Slason 1881-82.

The following description of the country under trinngulation I have compiled from notes furnished me by Mr. Doran. As already staled, it comprised three standard sheets between the parallels of Description of country triangulated. $24^{\circ} 15^{\prime}$ and $25^{\circ} 0^{\prime}$ north latitude and the meridians of $72^{\circ} 30^{\prime}$ to $73^{\circ} 0^{\prime}$ east longitude. From the north-east corner of this portion of country, and not far from the small cantonment of Erinpura, rises a range of hills known as Sarnau, which runs about south-south-west for 20 miles, and rises up toa maximum height of $2,7 \% 3$ feet at Makrora H . S. near its southern extremity. Below the western faoe of this rauge, some 12 miles from its northern end, lies the town of Sirohee, the capital of the State of the same name. Here there is a branch postoffice, a dâk bungalow, and auother bungalow used occasionally by the political officers. At the foot of the sonthern extremity of the Sarnau range flows from west to east a branch of the Chota or Western Banas, nad separates that range from Mount Abu. This mountnin extends in a south-westerly direction for auother 19 miles, the oulminating point, known as Guru Sikkar, being $5,6,50$ feet above the eer ; about 5 miles south-west of Guru Sikkar is the small sanitarium of Abu. In continuation of the Abu range, but only comnected by a very low watershed, is the Jairaj mountain, the highest point of which is 3,575 feet, and the length about 12 or 14 miles. Beyond Jairaj, again, but bending more to the westward, is the Lulka mountain, which is nut more than 5 miles long, and is only 1,946 feet higl. This brings us to very nearly the south-western corner of the country under description, so that this chain of mountains, of which Guru Sikkar is about the centre and the culminating point, divides the ground diagoually iuto two portions. More or less along the meridian of $72^{\circ} 30^{\prime}$ or the westeru limit lie the Nadona and Dohirra hills. The highest point of this last range is known as Sunda, and is 3,252 feet in height.

The triangular space (about 700 qquare miles in area included between these hills is low, and more or less covered with jungle; but dotted about it are small hills 200 or 300 feet above the general level. The general drainage is from the centre: one stream, rising in the nurthern slopes of Abu, flows north-north-west; whilst another, rising from the same part of the country, flows south west and out between the Lukka and Nadona liills. They are both called the Sukri, which merely implies that the river dries up. This name seems to be so commonly given to river courses hereabout that it censes to distinguish one river from another, and is very apt to lead to confusion. A mnde rond runs through this valley in a south-westerly direction from Erinpura via Sirohee to Deesa. Immediately below the Abu, Jairaj, and Lukha mountaius on the opposite side, i.e. to the south-enst, is the Western Banas valley, down which runs the Rajputínu State Railway from Aimere to Ahmednbad; its oourse is, ronghly speaking, parallel to the river on its left bauk. To the south-enst, again, of this valley are rugged masses of hills inhabited by Bhils nad Girassins, some of whom proved to be decidedly hostile and much averse to allowing Mr. Doran even to enter their pals. The highest point is that kuown as Mard, which is 3,080 feet.

The general level of the Banas valley may be taken at 1,050 near Rohera in the north-
Genoril level of the countrs. enst, and 630 where the river leaves the work. This slows a fall of 420 feet in a little over 40 miles, or just about 10 feet per mile. To the west of the Abu ranges the height of the centre of the valley is 1,020 feet, and 25 miles to the south-west of that is 710 feet, giving 12 feet per mile, or nuch the same slope. To the north and north-west the fall appears to be about 15 or 16 feet per mile. These palues must not be taken as strictly accurate, but are sufficiently so to give a geueral idea of the fall of the ground. The Western Banas was the only river bed in which there was any rumning water, and even this disappeared before it left the ground under desoription.

Of cultivation there is not much anywhere; the best part is along the course of the

Cultivation.

Bauns river, but oven here there is no great extent of cultivated country, whilst on the other side of Abu by far the greater part of the land is covered with brushwool and grass. No doubt, parts of it may be poor, stony soil, and in other parts there may be a lack of water, but the real reason of the scarcity of cultivation is the unsettled stnte of the country and lawless olaraoter of the inlasbitants. When reconnoitring with Mr. Doran we passed over large tracts of land in Sirohee which in my opmion only required clearing and tilling to produco excellent crops, but which are now densely covered with bush-jungle. Water was not outwardly visible, it is true, but there was no reason to surpose that there would be any lack of it if wells were sunk, more particularly near the beds of tho streams. As you approach Palaupur cultivation increasss, and very good riee is grown, more particularly at a small village oalled l'alkhari, which is noted for the excellence of its rice, known as kamod.

The largest native town met with was Sirohee, already mentioned as lying at the foot

Placos of noto.

 of the western slopes of the Sarnau range. Although the capital of a State and the residence of a Rájá, it is but a small and uninteresting town. The sanitarium and small cantonment of Abu is situated on the top of the mountain of that name, as also are the celebrated temples of Dilwara and the small temple of Guru Sikkar, which ocoupies the extreme summit of the mountain. The Dilwara temples are nenrly $1 \frac{1}{2}$ miles north-enst of the residency; these temples are very far from imposing from the outside, but the interior is beautifully earved, more particularly the inside of some of the domes, which are the best of their kind that I have ever seen. All the platenux of Mount Abu have been already surveyed on the 6 -inch sonle by Major G. Stralan, and in his report of $1870-71$ he gives a short aocount of the savitarium and the places of interest to be found there. Since that date another road to the top has been made up the enstern side of the hill; it connects the Rajputina-Malwa Railway with the cantonment. The distance is 15 miles, and the total ascent is 3,000 feet, nearly all of which is surmounted in about 9 miles, the first three and the last three miles being comparatively level. In the valley to the south of Mount A bu are numerous ruins, the remaios of Chandal Nagri or Chandrawnti, which is said to heve been a very large and populous city. Mr. Doran reports that all over the valleys in that neighbourhood he met with ruins indicating that at one time this part of the country must have been far more prosperous than it is now. To the south-enst, ngnin, of Chandrawati are the five temples of Ámbá Málá on the road to Dántí. Of these, only one is kept up, and the others are left to crumble away; it is dedicated to Ámbá Diváni and is noted far and wide, pilgrims going to it daily in considerable numbers to make their offerings; the revenue derived from this source, after deduoting the expenses connected with the temple itself and its priests, goes to the Rao of Dántá. A mile or so to the south-east of the Ámbé temple is the small village of Kumária, ocoupying the site of what was once a large and flourishing town called Kandalpur. The following tradition was related to Mr. Doran by the priest in chnrge of the temple. During the reign of Rája Bhimnk, who resided at Kandalpur and was noted for his virtues, A'mbá Devi descended on the earth. She selected Bhimal Sáj, mabajan, one of the numerous good and religious men then living in the country, as her protege, and on him she poured down wealth, enabling him to double his charities and to build temples. He built 360 boly places, and his famo was at its height when the goddess condescended to converse with him personally. She spolie thus to him-"Tell me, my son, to whose assistance and coustant oare do you owe your present good name and prosperity, for your reputation is world-wide on account of your munificent charities and the numerous temples you have erected." His answer was "To Gorji" (a Jain god). Thrice did she ask him the same question, and thrice did the ungrateful man malie tho same answer. Enraged at his ingratitude, the goddess cursed him and decreed that all the temples should be burned to the ground. The destruction of the temples at once commenced. Bhimal Sáj, seeing this, fell at her feet and begged that in consideration of his charity and the numerous temples built by him his good deeds should not be buried in oblivion, but that his name might be handed down to poslerity. The goddess, taking compassion on him, ordained that five out of the 360 temples sloould be spared; the remains of the others are still to be seen all round about. In reality I believe the Mohamadans are respousible for their destruotion.The country under description belonged to the three states of Sirohee, Palanpur, and Dintf, of which Sirohee occupied about three-fourths,
Statos in which the worl fell. the remainder being nearly equally divided between the other two.
Part of the ground surveyed in detail was extremely easy, and part very difficult; the whole of standard sheet 85 was bad and was undertaken by Messrs. Kitchen and Tate and sub-surveyor Abdul Gufar, assisted by Mr. Doran for a few days. Of this standard sheet the eastern portion is a high plateau, areraging about 2,600 feet above the sea; it forms the highest part of the extreme western edge of the great Rájputína and Central India plateau. From this, ngain, rise the highest ranges and peaks of the Aravalli mountains with the exception of Mount Abu, whioh overtops them by vo less than 1,000 feet. Unlike Abu, they are mere ridges or peaks. This high country is open, undulating, and fairly oovered with villnges: there is a good denl of cultivation, but from the nature of the ground it runs in long lines following the small valleys, almost every ono of which is, where practicable, dammed up at intervale, forming a serjes of steps on which rice is grown. Where the valleys are wide and the slopes of the hills can be cultivated, whent is sown. The inhabitants are Brahmins and Rajpute, prinoipally the former; a few Bbils may be found in the outskirits of each village, but there are no Bhil prils at all. It forms part of the watershed of India; for from the north and to the east flow the sources of the Banas, which oventually flows into the Ganges; to the south are the sources of the Sábarmati, which flows into the Gulf of Cambay, whilst to the north west rise two or three branches of the Luni river, which loses itself in the Rann of Cutch. The fall from this platenu to the west is abrupt, the first three miles of the Goria Sembal pass taking you down 1,200 feet. After that the slope is gradual, but the rond is difficult, from juugle and rocks, for nother eight miles, after which the open oountry is reached. The scenery is rather fiue all along this western limit of the Aravalli, the mountains throwing out bold spurs towards the plaine, forming a most intricate pieco of country corercd with beavy junglo. When once clear of the belt of forest below, nothing is visible but a great open plain with isolnted hills or short ranges of hills rising abruptly from it. As you go north-west these hills beoome fewer, and in 50 or 60 miles you
may soy you are in the desert. Duo west there are more hills, some of them renching an eleration of about 1,500 feet above the plains, or even more ; but they only form comparatively small groups, and in no way seriously interfero with a traveller's prigress alno the country. At the same time they are somewhat more troublesime to the survejor, for they are most awkward hills to climb and to get about on; and as the hent of the sun is always great, and nfter January rapidly increases until in the end of March it becomes scorohing, it is no slight task scrambling over the big rocks of which these hills are composed. There never beiug slade for the tente, makes it very trying eveu under their shelter. On the 12th March I registered a masimum in my teut, 99°, on tho 21 st it was 103°, and on the 25 th it reaohed 107°, and did not go below 100° till past 5 in the afternoon. After that I marched towards the hille, where I found it really quite pleasant compared to what I had loft. The change from the burning heat and glare from the sand witbout a drop of water to the narrow valleys with small streams trickling between green trees was very striking. By the 3rd April I was very nearly on the plateau, and at 5 r.m. the thermometer was only 78°, whilst at 6 A.m. of the 4 th the thermometer on the grass read only 45°. This was, however, in an exceptionally cool place, at the bottom of a_{a} uarrow valley just below the plateau and close to a running stream.

The fort of Jalor fell into the season's work; it may be called a first class fort from its size aud position, but I cannot give any detailed account of it, as no one is allowed to enter it. It is situated on a high hill standing 1,200 feet above the plain at the norti-west end, and 1,500 towards the south-east end of it. On the north, east, and south the hill rises abruptly from a sandy plain ; the city, which is enclosed by a wall, lying at the foot of the hill to the north. At a distance of 3,000 yards to the west is the Roza hill, which rises 320 feet abore the highest point in the fort, and commands nearly all the interior. It is, hovever, a difficult hill to get up, and the top is nothing but a mass of huge rocks, piled one on top of the other. From here I got an extremely good view of the whole nosition, and was eanbled to make a tolerably complete sketch on the one-inch scale for the standard sheet. I could also see enough to show me that it was not kept in repair, aud it had all the appearance of beiug perfectly deserted. I observed some half dozen guns on the bastious, but not a sepoy nor a living soul was to be seen anywhere. The Roza hill is connected by a small range with the north-western portion of the fort hill, but there is a good pass for animals, though impassable for carta, through it.

Extract from the Narrative Report of Mrajor T. T. Cartbr, R.E., Deputy Superintendent, Survey of India, in charge No. 2 Topographical Party, Khandesh and Bombay Natice States Surrey.-Season 1881-82.

The country triangulated consists of certain outlying rillages in Khandesh and Nasik, lying in the Aurangabad district of the Nizan's dominions,

Description of country triangulated.

 extending over an area of about 500 square miles, lying ground lies to the south of the Satmala range of hille, above the Gháte, and at nu arerage height of $\mathrm{J}, 900$ feet above the level of the sea. The northern portion is hilly, the hills being covered with heavy jungle. To the east and south the country is more undulating, but is still woody; while to the west and south-west the country is tolerably open, having a fer trees just round the villages.

This sheet consists of three low ranges of hills-one to the west, one very nearly in the

Description of country plane-tabled.Shect No. 21. oentre, and one to the enst of the sheet. They run in n north and south direction, and uaturally form two valleys. The one to the west is drained by the Bori river, which runs direct into the Tapti ; the one to the east is drained by the Anjani, a emaller river, which enters the Girna, a tributary of the Thapti. Both these valleys are very fertile and well wooded with fine mango topes. The Bori river, which enters this sheet at an elevation above sea level of 850 feet, falls to a height of 650 feet, where it lenves the sheet ; the hills nu either side rising gradually to a height of about 250 feet above the level of the rivers. The eastern range rises to nbout the ame height above the valley of the Anjaui, but the character of the range is different, the summits of the hills forming considerable plateaus, on the top of one of which is built a temple and palin tank called Yadmala, by which name the range is known. All the Lills in this sheet are covered with low scrub and grass, but wo heury jungle: consequently the country is much cut up with ravines and small streams, the traciug of which on the ground is nlways a tedious work to the detail surveyors. Λ prortion of the Chatiggaon
and Pachorn tnlukns consists penrly entirely of the valley of the Girna river, ruming through the sheet from southwest to north-enst, with its tributaries, the Titur, Hinra, and Bohla, which tnke their rise at the foot of the Satmala hills. The north-west corner of the sheet is hilly, the ground rising to an elevation of elose on 1,300 feet nbove the level of the sen. A portion of this ground consists of the Jewardi reserve forest, of 5,000 acres. The Ehandesh Government farm at Rokra, of about 1,250 neres, enters the sheets: It is cliefly a cattle farm with breeding stock. There is vo very heary forest in this sheet, the Jawardi reserve forest being newly planted out. The hills to the west are covered with grass and scrub jungle, while the valley of Girna is open and weil oultivated, and, except the
western quarter of the sheet, is studded with fine mango topes. At the village of Jamdha a pakia masonry dam is thrown across the river, and is the head work of two small enuals, one of which is taken north of the river and is 25 miles in length, and the other, south of the river, is about 10 miles in length. The sheet is much cut up by numerous small nalms aud ravives. 'The boundary between the Khandesh and the Nizam's territory extends along the southern portion of this sheet, and the detail survey has been carried into the Niznm's country for a distance of $1 \frac{1}{2}$ miles. The Great Indian Peninsula Railway pasess through the sheet from east to west.

Sheet No. 24 oomprises 142 square miles of the Chalisgaon taluka, with an overlap of Shoet No. 24. 50 square miles into the Nizam's territory. This country lies immediately below and north of the Satmala hills, which here rise up abruptly some 1,800 feet above the level of the plain country, which is about 1,150 feet above the sea. The oountry immediately below the Ghate, at the foot of the hills, is rugged and raviny, and covered with low sorub; but the mountain sides facing the north are, comparatively speaking, bare. On reaching the top of the Gháts (Nizam's territory) the country is fairly level, with a gentle fall to the south, and is well covered with fine forest trees. A portion of the Patua reserve forest enters into this sheet, but the forest is not very densely wooded. The rest of the country towards the north is open, very fertile, and studded with fine mango topes, and is well watered by the Titur, Utaoli, Bakra, and Garad nalas, tributaries of the Girna river. These become considerable streams during the monsoons; their banks are steep and they retain their water all the year round. The Great Indian Peninsula Railway passes through the north-west corner of the sheet.

The country plane-tabled this year in sheet No. $3 \pm$ comprises part of the Nandurbar Skeet No. 34.
taluka. About half of this sheet had been completed during the field seasons 1878-80, leaving the western portion of the sheet and one plane-table (64 south-east) at the south-east corner to be completed. The country in plane-tnble 64 south-east is hilly. The bills (rising to a height of about 950 feet above the level of the sen) consist of narrow ridges of trap running in a north-enst and south-enst direction, and here and there intersecting each other The hills are bare, and the country is well adapted for plane-tabling. Mr. Graham says " a remarkable feature in these ridges is that every alternate ridge is very stony, the tops being scattered over with buge boulders." The western portion of the sheet is of a different nature: the ground is more undulating, and for the most part covered with thick forest; the inhabitauts are cliefly Bhils, whn bave made considerable clearings in the forest ; the country is very unbealthy, the only time in the year when it is safe to work being from the beginuing of April to the beginning of June, and even in these months fever is very prevalent. Part of the Deomogra reserve forest (about 33 square miles) enters into plane-talles 65 north-west and south-west of this sheet. Fortunately, most of the forest trees are deciduons, otherwise the whole of this tract would have been very difficult to survey. 'There is geuerally an undergrowth of tall grass, which adds to the surveyors' difficulties. A few wild beasts inhabit the Deomogra forest and the other forest tracts on the banks of the Tapti. Mr. George, while surveying the Deomogra forest, killed a shebear and her two cubs. She had been the terror of the Bhils in those parts. having mauled no less thau 13 men, killing 5 out of the number. Mr. George had some difficulty in gettiug men to enter the forest, so le thought the best thing he oould do was to bag the bear first.
 straggling municipal town It gives its name to the peta of
Torns-Slact 21.-Parola. Pragola, a subdivision of the Amalner talukn. The chief object of interest is the fort, built 150 years ago by Jaghirdar Hari Sadashir Damodar. It is built of sione and mortar, is nhout 525 feet long by 435 feet broad, and surrounded by a ditch The fort was diemantled in 1857: nothing now remains except the walls. There are several fine stone Hindu temples inside the town, and outside, severnl old mosques. The chief trade is in "lugdas" (women's robes) and in cattle, cotton, and grain. The town contains a Mahallari's court, three schools, a post-office, and a dispensary.
 Erandol. population 11,295 . It rises with high battlemented walle from the bank of the Anjani river, and is connected by metulled ronds with Dharangaon, P'arola, and Mhasa wad railway-station. It was ravaged by Shivaji in 1030. It has a considerable trade in cotton, indigo, and grain, and has a manufactory, where a conrse kind of paper is made. It bas a Mnmlutdar's court, a large schoolbouse, dispensary, and post-ofice. In the Pandao Vada (a ruined stone mansion) there is sonie beautiful and varied scroll work.
 Bohbadurpur khan, was pillaged by Samblajii in 1685. At that time it was a place of much importance, with many bankers and merchants. It is now a squulid place of no particular note. There are the remains of the old fort.
 on the Bari river, and has the remains of a handsome temple built 125 years back.

Sheot No. 23.-Pachora. stands on the railway 35 miles south-east of Dhulia and 231 from Bumbay, and is the nearest station to the Ajanta caves, distant 25 miles. There are the traces of a wall and old fort. Páohora coutains a Mamlutdar's court, travellers' buvgalow, post-office, and sehool

Bhadgaon. Bhadgaon peta of tho Páchora taluka. The town is built on an island formed by two branches of the Girna river. I'he towns, battlements, and four main gates of what was once a strong town wall, remain. Inside the wall some of the buildings are said to be 400 years old. Its trade chielly consiste in cotton, indigo, linseed, \&o. It contaius a Mahalkari's court, school, post-office, and dispensary. The Khandesh Government farm, the ouly Government farm in the Bombay presidency, lies two miles to the north of Bhadgaon.

Babal. Girna river. It has the remains of an old paka fort and some old temples on the rising ground, slowing that at one time
it was a place of importance.
Kajgaon, Páchora taluka. At the railway-station, half a mile north-west of the
Kајgaon. village, are two cotton-presses-the New Indian Press Company and Messrs. Hormarjee Brothers.

Nagardcole.

 railway-station. There is a ruined Hamodpanti temple of Mahadeo to the west of the village. on the Great Iudian Peninsula Railway, 34 miles south of
Sheet No. 24. - Chalisgaon. Dhulia. The old fort has fallen into complete decay. It is a place of no great importance, except that it lies on the main rond to Kanad, iu the Nizam's territory, ciá the Outram Ghât. Thẹ town is situated on the left bank of the 'litur river. The Mamlutdar's court and post-office lie between the river and the railway-station, which is on the right bank of the river and distant about half a mile north west of the town. Within the town is a school, where linglish and the vernacular are tought.

Tanala, $\frac{\text { Lat. } 20^{\circ}}{\text { Loug. }} 74^{\prime}{ }^{\circ} 26^{\prime}$, , population 3,030 , is situated in the Nandurbar taluka. It is next in
Sheet No. 34.-Ranala. size and importance to the town of Nandurbar. It is an inami or alienated village. The first inamdar is said to bave been a grandson of the Mahratta Shivaji. It was once the seat of an independent chief ruling over the greater part of Western Khandesh, and in A.D. 1750 was said to have had a population of 20,000 people. There is a large settlement of Bohoras at Ranala, who keep up two schools for their children. The town contains over 200 palia houses. In addition to the abovementioned schools, there is a vernacular sohool and a school conneoted with the Scotch mission.

Of forts, properly so called, there are none, though there still remain the old walls
Forts. round the towns of Parola, Eraudol, and Bhadgaon. At Bahadurpur, Bahal, Pachora, Chálisgaon, and Narainpur (sheet No. 34), there are remains of what were at one time Keeps, consisting of four walls with round towers at their corners.

The Satmala range is crossed at the Ontram (more generally known by the name of the
Hills and passes.-Outram Gbât. Ranjangaon) Ghât. A well laid out metalled road of about five miles in length, which was opened in 1872 . leading from the foot of the hills on the British side to Kanad, the chief town of the Kanad taluka, Dowlatabad Circar of His Highness the Nizam's territory and the outlying British villages, is taken to the top of the ghât. The road is practionble for traffio of all descriptions.

Farther east there is a disused pass called the Gortalao Ghat, leading from the village

Gortalno Ghât.

of Wagli in British territory ria Saigowhan to Kanad. It is now impracticable for any one but a man on foot.
Padmala hills, three miles east of Erandol. Abrupt hills with flat tops or plateaux Shect No 21.- Padualn Fills, covered with grass and scrub.
Two small passes, leading from the large village of Ragala, in the valley of the

$$
\text { Sheol No. } 34 .
$$ Amrawati, crossing a 1 arrow ridge of bills that separate it from the Tapti valley, and leading to the large village of Koparli. At present they are impracticable for leden carts, but with a little labour night be made serviceable and of much use as short cuts between the villages mentioned.

Priacipal roads. - Shect No. 21.
(1) Metalled road with masonry bridges and milestones lending from Dhulia ria Parola and Eraudol to Mhasawnd railway-station.
(2) Metnlled rond 22 miles io length from Parola to Knjgaon railway-station, on the Oreat Indian Peninsula Railway, with masonry bridges and mile-stones. Nine miles of this road enter this sheet.
(3) Metalled rond, Erandol to Dharangnon, masonry bridges and mile-stones. It branclies ofl about one mile enst of Erandol from the mnin road to Dhulia.
(4) Rond from Erandol to Maheji railway-station, metalled between the village of Maheji aud the railwny-station. In course of being metalled throughout.
(1) Metalled road from Paohora to Bhadgaon, with mile-stones; length 8 miles. Sheet No. 28. It continues past the Government farm at Rokra toTalwara, but the latter portion is unmetalled.
(2) Thirteen miles of the metalled road from Parola to Kajgaon-railway station previously mentioned.
(3) A laid out, but unmetalled, though partially bridged, road from Pachora via Kajgaon and Waghli to Chalisgaon, and ultimately Nandgaon to Nasik Collectorate.

Sheet No. 24.
(1) Metalled rond from Dhulia to Chúlisgaon, and thence to Kanad, crossing the Outram Ghât.
(2) Unmetalled road from Pachora viä Chálisgaon to Nọndgaon, Nasib, in continuation of sheet No. 23.

Main road from Dhulia cia Songir, Dondaicha, and Ranala, to Nandurbar. The portion Sheet No. 8 . entering this sheet is unmetnlled, but it is proposed to metal it throughout between Dhulia and Nandurbar. This road continues oid Visarwari and Navapur to Surat, and is much used.

The Great Iudian Peninsula Railway enters at its 201st mile from Bombay, crosses Railway. through the north-west corner of sheet No. 24, through the whole of sheet No. 23 in a north-easterly direction, and through the north-east corner of sheet No. 21, which it lenves at the 248 th mile from Bombay.

The Tapti (sheet No. 24), and its tributaries the Girna and Bori (sheets 23 and 24), the Rivers. Amrawati, Shivnad, and Nasu (sheet No. 34), are the principal rivers met with in this year's work. 'The Girna and Hori take their rise in the Sahyodri mountain range in the Nasik district; the Shivnad, Nasu, and Amrawati, in the low hills in the Nandurbar taluka.

The Tapti in sheet No. 34 runs through a country of thick forest, inhabited by wild Tapti. beasts, and, except for small clusters of Bhil huts, with no sign of iuhabitants.
The Tapti is neither used for vatering fields nor for boat traffic.
The Girna, in Khandesh, flows through a well-cultivated valley. At the villnge of Bahal Girna. (sheet No. 23) the Jamihn oanals streteh east about 27 miles on the left and 12 on the right bank.
The Bori river and its tributaries are much used for irrigation. Neither the Girna Bori. nor Bori are navigable, and in the dry season there is little water left in their beds.
In the talukas of Khandesh, viz., Amalner, Erandol, Chálisgoon, and Pachora, which Inhabitants. are comprised in sheets 21, 23, and 24, the population is chiefly Hindu, being in a proportion of nive to one of the
Mahomedan population.
The Hindu population is chiefly composed of cultivators, comprising Kunbis, Bhils, Banjaras, and Kolis, in the proportion, roughly speaking, of 5,1 , $\frac{1}{2}$, $\frac{1}{2}$ out of a unit of population of 10 , the remaining 3 being composed 1 of Mussulnans and 2 of Hiudus of other oastes and trades. In the Nandurbar taluka the Bhil population came first in number in proportion of 3 Bhils to 1 Kunbi. The Banjaras are in the same proportion as in the other talukas. There are very fer Kolis; but their place seems to bo taken by a caste of cultivators oalled Konkanis. The Hiadu population is about the same in proportion to the Mahomedan as in the other talukas, viz. 9 to 1.

Of the people above mentioned, the Kunbis are supposed to have settlod in Khandesh
Kunbia. about the eleventh century, being forced to leave Guzerat by the encronchment of the Rajput tribes. They are hardworking and most skilful husbandmen. Some of them are well to do, but most are poor.
'The Bhils come next in number. In the talukas of Amnlner, Erandol, Chaliagnon, and
Bhils. Pachora they are for the most part in service as labourers with Kunbis and other cultivators, or work fields on a joint eystem, where the landowner provides the land and grain, the Bhils the labour. In the Neudurbar taluka the Bhils are of a less civilized stamp; they form the grenter part of the population. The landholders are chiefly Gujar capitnlista, and the Bhils are content to work for their food, a little clothing, aud liquor distilled from the flowers of the mowa tree (Bassia lonyifolia).

The Banjaras may be divided into those who keep to their old trade of oarriers and those who hnve begun to settle as husbandmen. They are strong, well-made, and as a rulo good-looking, both men and women; but they are by no menns clean. Since cart-ronds have been opened nud they have to compete with railwnys, they have had to give up to a great extent their wandering waye. There are several divisinos of the tribes. The largest is that of the Charan Banjaras, who form about one-half of the whole Banjna population. The Banjaina settlements are usually distinguished from those of the Kunbis, or ordinary cultivators, by oaeh family Laving a distinct hut as a dwolling place.

Kolis are either fishermen or village labourers. They are the anme caste as what are

Konkanis, chiedy in the Nandurbar taluka, are sometimes confounded with the Bhile. Their ancestors are supposed to have come from the Konkan, Soil, product, ge.-The soil is cultivather black, brown, or red ; the former is a rich loam, Amalner taluka. the second coarse and grapelly, and the red an alluvial clay. Bajri, jowari, pulse (kulith), a small quantity of wheat. There is a considerable entton cultivation, equal to about one-half of the cereal orop.

Soil, products, \&c.-Except in some very poor tracts near the hills gouth-east, the soil Erandol taluka. is the same as in Amalner. The chief crops are jowari, bajri, wheat (a little), pulses (chiefly gram), and a cotton oultivation, equal to about one-third of the cereal.

Soil and products.-Good black soil in the valley of the Girna; in other parts a red clay Pachora taluka. soil, which near the hills is light and friable. The chief crops are jowari and bajri, and a small quantity of wheat and oil-seeds. A considerable quantity of til is grown, and the cotton cultivation is nearly two-thirds of the cereal.

Soil and products.-The soil is not so good as in the other talukas mentioned; muoh of

Chalistraou taluka.

 it to the south being hard and stony, and the black soil of the Girna valley rests on a subsoil of gravel and sheet rook : consequently bajri is the clief cerenl crop, nearly double that of the jowari. Very little wheat is grown, but a larger quantity of oil-seed (til). The cotton cultivation is about one-third of the cereal.Soil and products.-Tlie prevailing soil is a rich black loam. Crops : bajri, jowari, rice,
Nandurbar taluka. and a considerable quantity of wheat, are grown. Of pulses, gram is the largest crop. There is not much cotion grown, the cotton oultivation heing about one-twelfth of the cereal.

Jamdha canal.-The Jamdha canal (sheet No. 23), left branch 27 miles long, right branch 12 miles long. The works oonsist of a masonry weir across the Girnariver at the village of Jamdha. Both canals are completely bridged and regulated, and command an area of about 45,000 acres for irrigation.

The Mhaswa lake, 23 miles east of Parola (sheet No. 21), about 4 miles in circumMhaswa lake. ferenoe, but the water-supply varies very much. During the seasou under reviem there was very little water in it, but a considerable extent of marsh. The water is retained by a mud and a stone dam 500 yards long. Two small canals are taken out, oommanding on arable area of about 4,000 acres.
wells.

At Diggi village (sheet No. 23), 8 miles south-west of Kajgaon railway-station,

Antiquarian romains, objects of interest, \&e.

Over most of the country water is found from within 20 to 40 feet of the surface, and the country is well studded with irrigation wells.
building, representing a party of dancing-girls and their nttendant nusicians.
At Patna (deserted village), sheet No. 24, at the foot of the Satmala range and 10 miles south-east of Chálisgnon, there are some Brahmiu caves, dating probably from the twelfth century, and of iuterest as being probably one of the oldest settlements in Khendesh.

Extrict from the Narrative Report of Major J. R. Wilmen, S.C., Deputy Superintendent, Survey of India, in chargo No. 5 Topographical Party, Rajputana and Maliva Survey.Serison 1881-82.
The oountry triangulated cousisted chiefly of hills and undulating and intrionte oountry,
Country trinngulnted. ensy enough to throw points over, but tedious and troublesome for plane-tablers. The greater portion of it consisted of the bed of the Máhi river after it takes its peouliar bend near the village of Anant. From flowing almost due north at this place the river sweeps suddenly round and flows south-west into the Gulf of Cambay. The triangulation extended ohiefly over the Bánswára, Dongarpur, and Udepur territories.

The country plane-tabled was adjacent to that triangulated, and the nature of the Country plano-tabled. ground very much the same, there being only 190 square miles of open country out of 1,092 square miles survered, the remainder consisting of hilly, jungly, and iutricate ground, being ohiefly below the Ghat and amonget the feeders as well ns the bed of the Mábi rivor.

There were two towns surveyed this senson on the large soale-Jaora and Bénewára. Nawab of Jaora, a ebief who takes muoh interest in the welfare of his estate. The city is kept generally very clend, and is in this respect a contrast to some other large nities. It is situated in flat, open oountry; a bigh wall with bnstions runs three-fourths round. Opium is grown on almost every inoh of ground. Hhuswara, on the contrary, is a dirty, ill-kept, half-deserted, overgrown village, the residence of a Rajput Hijá. The town is situated on a spur and at the foot of some high bille.

These hills are to its south-east, and oompletely overlook the place. There is an attempt at fortifications in the shape of a high wall running nearly all round the oity; but the wall was never intended to resist artillery, being only a protection against the Bhils with their bows and arrows. The eity to the north being on a slope is oompletely ecmmanded from some high, open ground to the north. The country round about is remarkable for its numerous small lakes, Bánswára itself having six within a radius of a mile, and annther large and deep one some two miles due east. A building built on its banks is the Raján's summer residence.

There were no roads of importance in this year's work; in some parts even carts were Roads. not to be got owing to there being no roads along which they oould go.
The Máhi was the only river of importnnce, a enasiderable portion of which runs Rivers. through the work. This river is much bronder now; its bed continues to be very rocky and shingly. It is not passable during the rains, but enn be crossed almost naywhere after the rains and before the monsoons. There are a few fords and no ferries. The principal pasees across the river are between Nain and Bajrangarh, Seogarh and Bajana, Bájna and Kelgaj, Kelgaj aud Khandu. This last road crosses the Máhi river three times.

The imbabitants are chiefly Bhils. Their manners and customs have been fully Inhebitants. described in the Rajputann Gazette and the reports of othor survey parties. 1 mentioned in a previous report the peculiar oustom of the Bbils of branding their male children on the arms above the wrist with burning cotton dipped in oil. This leaves a permanent mark for life, aud the Bhil proper is to be recognized by this mart. The children are branded at about the age of seven, or when they get their first permanent tooth. I have not seen this custorn mentioned in the Gasette referred to above, nor in any previous survey report, nor in the general annual report of surveys; and as it is a prinoipal custom, and was not known to officers in the Bhil corps or Politioal Agents with whom I came in contact, I have alluded to it again.

On the upper plateau opium is most extensively grown, being the chief product of the Products. oountry. The usunl fields of corn are oultivated, but are of very small importance compared with the opium oultivation. Below the ghats, amonget the bhils, rice and Indina corn are mostly cultivated, though not in very large quantities, sometimes barely enough for their own consumption, exoupt in parts of Dongarpur, but this has not come under survey yet. The oultivation of opium is gradually being introduced, but the Bhil is not willing to give up his old ways of living, and it is not until they realize the profits of opium oultivation that they take to it with any faith or zeal. The nature of the country is against opium cultivation to any great extent, but it grows well on either side of rivers and low flat ground.

Extract from the Narrative Reporl of Baevet Lieutenant-Colonel R. G. Woodthonpe, R.E., Officiating Deputy Superintendent, Survey of India, in charye No. 6 Topographical Party, Khasi and Garo Hills Surrey.-Season 1881-82.

The country to be surveyed consisted of the lower spurs of the Tipperah Hills running northwarde past the boundary into the plains of South Sylhet, as well ns some isolated hilly country due south of the station of Sylhet lying between Fenchugunj and the Manu river and a purtion of Hill Tipperah, the whole lying west of and being a contivuation of last yenr'e work:

Very little triangulation was necessary, as several stations of the Grent Trigonomet-
Triangulation. rical Survey and others previously fixed by this party fell in the different portions of the country to be surveye 1 , affording sufficient points to start work from. A small amount of subsidiary triangulation was done, but the exigencies of superintending the new sub-survesor's work prevented my oarrying on any triangulation in advance of the plane-tabling.

Major Badgely did not, I believe, mention Mr. Ogle in his report on the Manipur-Burmah survey, and in this report I have also unintentionally omitted

Mr. Chennell, to whom the survey of Hill Tipperah on the $\frac{1}{2}$-inch scale fell, completed it by the end of Marrh, and manged to survey $2: 22$ square miles. He secured the services of a large uumber of Kuki aud Tipperah coolies, who were of great use to him. I was unable to visit the bills in which he was working, but I have every coufideuce in him, aud have no reason to question the accuracy of his work.

Mr. MoCay surveyed an area of 50 square miles on the seale of the rest of the work, viz. 2 inches $=1$ mile, and finished it by the 23rd February, when I sent him to nesist Mr. Ewing, who, being entirely new to the work, found himself occasionally in difficulties. Mr. McCay's work seemed to me to be very well done; but he unfortunately, in one or two places, took as his boundary the revenue survey line, nud left the western side of some low epurs untouched, somewhat spoiling the look of the fair map. This defeot will be remedied. Mr. Keating did 31 square miles, which, as far as I could test it, seemed accurate. His work will be still further tested this season. Mr. Campbell had some difficult country to do, but turned out 41 square miles of very good work. Mr. A. Ewing had never done any survey wurk hefore, and the country in which he found himself set down is such as to try the resources of the most acoomplished survejor. It is therefore not to be wondered at that his progress was slow, but he surveyed 21 square miles with very fair accuracy.

Shah Nasiruddiu turned out 31 square miles of very good work.
The country surveyed on the 2-inch scale presents few actual physical difficulties,

Description of country, \&c.

inasmuch as it is easy to chain up the several streams which flow with au almost level course from the low hills in which they take their rise to the plains. In the part worked by Messrs. Keating and Ewing and the sub-surveyors this was the case, except in a few places where the swampy nature of the valley made it impossible to chain along the banks of the stream, or even to distinguish ite course, which frequently loses itself in the marsh. As a rule, the centre line in these blocks of hills is the watershed, and the strenms flow thence nearly due enst and west. The highest hills in these tracts are not much rore than 100 feet above the plains; and as the streams descend in the first hundred yards of their course some 50 or 60 feet, it follows that, for the four miles, which is the average listance they have to traverse before reaching the plains, their fall is only 12 feet in a mile, which just keeps the water flowing. These streams are only 3 or 4 inches deep (except here and there, where shallow pools ocour) during the culd weather, but in March, after a heave shower, they rapidly become impassable. On one occasion, when traversing one of these streams, I found myself at noon only a mile from the tea-garden Chaotali, at which my camp wes pitched, and as the planter had asked me to breakfast at 121 , if I found myself near enough, I left my men in a small out-garden to rest and await my retura, and went on. A good road runs from this out-garden to Chaotali, being crossed several timen by the stream, which here has cut a deep and narrow channel for itself through the sandy soil; but I had no difficulty in wading across the stream, without getting any water into my boots. While at breakfast, one of the very henvy storms of thunder and rain, so prevalent in the latter half of March, came on, and sheets of water fell till 4 r.m.; when the storm passed away the sun came out, and I sallied forth on a pony hoping to finish my traverse before nightfall. On arriving at the first crossing I found a swollen torreut laden with boughs of trees, grass torn up by the roots, and other debris, sweeping past, and men and women gathered on either bank unable to cross. They told me if I tried to cross on my puny I should be swept awny, and they were evidently right. Fortunately I had an elephant with me, and sending for him I crossed and weut on, the river (for such it then was) having risen at least five feet in the three hours. At the crossing nearest to the out-garden I found my meu trying to pass over; one or two had managed it at the imminent risk of beivg carried down and entangled anong the bamboos and creepers lining the banksand hanging into the water. There would have been no chance of getting the instruments across. The elephant had to make two journeys at every crossing, and it was 7 o'clock bofore we had reached Chaotali, only three quarters of a mile from cur starting point.

The difficulty caused by rising streams was not, of oourse, experienced till March, and although the sharp turns and wiuding courses of all these small streams, as they thread their way between the low but steep-sided hillooks, prevent traverse along them being carried on with anything like rapidity, yet the real difficulty of these surpeys lies in the fact of the low hills being all of one general average height, and all densely clad with forest and close bamboo jungle. What looks a prowinent hill from the eastern plains is seeu to be entirely hidden by nnother equally prominent hill from the western plains. On this acconut many of the triangulated points in these ranges are of no use in extending the triangulittions, but are very sorvicenble in affording checks to the plane-table traverses, though it is alwiys a work of time and tronble to find them, as at a distance of a few yards only in that jungle the most couspicnons marks in the most conspieuous trees are not always visible to the upturned eye, searching in vain to catch a glimpse of the shining bambon basket through the tangled lacework of the beautiful leafy canopy overhend. Platforms were built in trees at heights varyinur from 60 to 90 feet from the ground ; but although the view obtnined from such "eoigns of vantage" over the axpanse of hills and forest was extedsive, it was soldom instructive, as the indications of the general run of the streams are of the slightest, and the gentle dips between the waves of the unbroken sea of pale green bamboo or dark tree foliage below might iudicate a small dry ravine morely, or the course of a large stream, and it is impossible without nctual exploration to eny which. Henco very little actual plane-tabling could be done; and the wethod generally adopted was to traverse all the primoipal streams and their alluents, and cut liues between, connecting the different streams in such dircetions as seemed to alford the best mpportunities for ascertaining the general trees, from which n plune-tablo fixing could be obtained as a check on tio work.

The scenery in South Sylhet is exceedingly beautiful, and especially lovely in the evening light. Here is one scene which is only a type of many such. At 4 o'clock in the afternoon I num standing on a cleared hiill just above a large ten-garden. The air is benutifully soft and balmy, and looking to the enst I see below me the gentle undulations and fat ground under ten oultivation nat the rich dark green bushes standing out in bold contrast on the red brown soil. Among the buehes the busy coolies are at work, the women adding brightness to the scene with their brilliantly coloured robes. In the midst of the cultivation, on the banks of a olear stream in a small well kept enclosure with a pretty tank, stands the Manager's bungalow, a large, oommodious h.use with white-washed walls and lofty thatohed roof slightly hidden by tall plantain-trees. Rose bushes and other slrubs flourish in the garden, in which from my elevated standpoint I can see that the useful is not orerlooked in the culture of the benutiful, as testified by a corner where many tempting looking vegetables are growing. With the orange glow of the afternoon sun upon it, the bungalow with its garden looks, rs indeed I find it, a very haven of rest, comfort, and hospitality. I hear voices behind the bungalew near some large neat tea-houses, and looking in that direction I see an excellent tonnis court, where an exciting contest is being carried on between the young planters of this and a noighbouring garden. Beyond the tea, the view due south is closed by the virgin forest of dark trees and feathery bamboos, the greater portion of which will soon, by the enterprise of the planters and the extension of the tea-gardens, disappenr. To the south-west nud west the eye wanders over the plaine of South. Sylhet, bounded on the south by the jungle clad hills of 'Tipperah, purple now and indistioot. The flat green felds, obove whioh, as the sun sinks, soft mist wreathe float, are broken up by frequent clumps of mighty bamboos or fine old baninntrees, amid whose dark recesses a few glimpses of reddish roofs and the light blue snoke ourling upwards denote the presence of villages. Beyond these, to the west aud north, lie open expanses of what at this season is dry, or at the worst only damp ground, but which a few of the Marcl and April storms will speedily convert into awamps and even lakes ("haor" in the vernacular). A thin dark line appenring here and there marks the course of a river, its waters very low now and hiddeu by the high banks, above whioh the maste of oountry boate and the smoke from the funnel of a stenmer, just about to anchor for the night, are visible. Far away to the north, beyond the plains, the trees, the villages, and the station of Sylhet itself, rises the long, level outline of the Khasia hills faintly glowing in the sunset. A hum of voices aseends from the villages below, eaws wend their way homeward through the deepening gloom, and, as the sun sinks in the brown obscurity of the distant horizon, I ehut up my theodolite, and running down the hillside soon find myself at the bungalow, where a hearty welcome and an excellent dinner await me.

And here I should like to take occasion to nckuowledge the very great kindnoss, hospitality, and assistance I and my party have always reeeived from the planters in oarrying on our work in their gardens or the adjacent country-kindness whiol has extended to our kalassies and coolies, who hape frequently had a dry, warm elelter found for them when the inclemency of the weather rendered life in tents unpleasant.

Some good roads are being made in South Sylhet, and I hopo they will be finished this year-one from Sylhet to Fenchuganj and south to Langla being very much wanted. A narrow riding road, raised a few feet from the fields adjoining it on either side, already existe between Fenchuganj and Langla, and is being improved and extended across the Manu river down to a large garden called Shamshanagar. A road is muoh to be desired between Companyganj and Sylhet. At present the Government road exists only in the imagination, though tall bambons stack in the ground at intervals are supposed to guide the traveller along it. It runs through fields, and when I passed down last December the dhan had just been cut, nnd was lying on the ground quite covering the (at all times) rather obscure path. In many places the villagers through whose fields the path pnosed had removed the bamboos to their neighbours' fields, nnd I was only aware that I was going wrong by some infuriatod villager rushing at me,-

> "He eried, he roared, he storm'd, he tore his hair,
> "' Death, hell and furies! what dost thou do there p'"

Then I found that the deceitful bamboo had taken me half n mile out of my way. A bright thought struck me - "follow the telegraph line;" but this landed me in a swamp, and I only got right ngain after a couplo of miles' detour. Most of the other so-called Government roads are merely tracks across the fields and open country marked out by bamboo stakes, a little scraping here and there through the low mud partitions between the fields showiug how wide the road will be in the millenium. In December, January, and part of February a ride across the fields is not unplensant, after that the dried-np earth cracks under the powerful suu, in all directions, makiug walking unpleasant and riding almost dangerous; while in the end of March, and onwards till the rnins, tho traveller ploughs his painful way, knee-deep, through the mud flate, over whioh a little later on he can gaily take his way in bonts. There is a hill road neross the Uarargaj range leading from Sagurnat to Hingajia, which is passable in the dry weather, but ascends and descends so steeply in many places as to be difficult for laden animals, and I should think so slippery nfter rain ns to be dangerous even for ioot-passengers. The paths through the lower ranges generally follow the course of the streame, which, as I mentioned bofore, are very level, the only rise being one of a few feet at the watorshed. In the raius those roads are impassable. In some places, as between Indanagnr, Indessa, Ita, and Kijildara, the planters ure oponing out communications and makiug good roads for themselves.

The only rivers actually under surver last seascn were the Manu and its afluent the Deo, for that portion of their oourse through the Tipperah hills which fell in Mr. Chennell's work. I bad reeeived two very nice little subtense theodolites from the Mathematical Instrument Department, Calcutta, one of which I found very useful and accurate in rumuing check traverses through and round the sub-surveyor's work. The other eunbled Mr. Chennell to traverse the Manu and Deo rivers in bonte with grenter rapidity and accuracy than he had been able to attain the year before by cane measurements from boats.

The bills in the Tipperah territory immediately bordering ou South Sylhet are not inhabited to any great extent, but within our teritory all the ranges are being taken up and opened out for tea by various companies or individuals, aud the words "low hills covered with impenetrable juugle" may soon be left out altogether from the mapa; for the jungle, far from being impenetrable, will in a great measure have ceased to exist.

The plains in South Sylhet are very ferrile and populous, and we never had any difficulty in getting our supplies at any of the many numorous bazars which are so frequently hold in that part of the country.

Extract from the Narrative Report of G. A. McGn.L, Ese., Surveyor, Survey of India, in chargc No. 7 Topographical Parly, Rájputána and Simln Survey.-Season 1881-82.

Degree sheet xx, surveyed during the season 1881-52, is unquestionably the finest bit

Description.

 of country that this party has had to survey for the past five years. It is quite different from the ueual run of the degree sheets of Rajputána, being more or less fertile, with clumps of rocky hills of from 200 to 400 feet above the ground and oxtensive plaine of a hard soil composed of clay mixed with saud, besides the usual rolling eand hills and ridges of the desert. The eastern half of it may fairly be called the land of Goshen, the western being arid sand-wastes, with few villages and little or no water.There is no doubt that from the great experience acquired by a Surveyor he is well able to surmount great difficulties; but the one great difficulty which at times quite bewilders him is the making of arrangements for drinking-wnter for himself, his camp followers, and baggage camels. In the north-east section of this degree sheet, although water is plentiful, it bas to be got with great difficulty. The country depends on its supply of water on wells whioh are very far apart, some villages having no wells at all and are dependent on other villuges for water.

These wells contain delicious cool water and are of extreme depth, the average beiug 270 feet; but one mensured by me at the village of Bhakri in lat. $26^{\circ} 54^{\prime} 4^{\prime \prime}$, long. $72^{\circ} 38^{\prime} 41^{\prime \prime}$, was found to be 480 feet deep. The water is drawn up from this well by a relay of bullocke and canels. I have endeavoured to get every information I could about these wells from the villagers. They have all been dug by the charity of some rich manajan or bania; they are well built, throughout of stone, and have one or two large cisterns on either side, round each of which runs a stone trough for the ontlle to drink out of, aud this is the only water that they can get, as for five months in the year the tanks are quite dry. I was told that after a depth of three "purens" (18 fect) the sand censes, and a coarse kivd of sandstone is reached, which is eafy of penetration ; but at a great depth hard rock is encountered, which is blasted through till the remaining portion sounds hollow. The labourers then carefully tap through this, when a jet of liquid mud rises of an offensive smell. The work is now over, and the workmen are pulled up. The well then fills fast with water, and all that is neoessary is to draw away a qunntity of it, and the result is a spring of water that never fails.

It often so happens that a bucket falls in; men then are sent down seated on stout leather ropes, to which a cross-pole is fixed ; they tnke down with them hooks for dredging the water and bring up the lost bucket. These people have told me that in some cases the hard rock that land been tapped has fallen in, nud that the water below was in motion as if it were n flowing strenn, and in all suol oases the buoket is never found, as it is carried away: they also say that the depth of water is seldom over 12 to 14 feet. The measurement taken by me to determine the depth of the well was to the surface of the water. The well are not broad, only 8 to 10 feet across and circular, and during the middle of the day the water is seen below likg a six-inch wirror.

To form an idea of the depth of the well it may be illustrated that its depth is 120 feet

Height	St. Paul's	\ldots		360 ft
"	Kutub		.	234 "
,	Taj	...		162 "

$\begin{array}{llllll}\text { " Kutub } & \ldots & \ldots & 234 & , \\ \text { ". } & \text { Taj } & \ldots & \ldots & 162 & \text { ", }\end{array}$
On the north-west corner

Lakes.

 more than the height of St. Paul's at London, 12 feet more than twiee the height of the "Kutub" at Dellii, and 6 feet less than threo times the height of the Taj at Agra. puta astop to the manufacture of salt, the Telisildar of Thalodi used to farm out the lakes ficles of gra ocour extensivo plains of dell of red sandetone, and here I oame upon several dried-up salt lakes. Before the Inland Custome Department to the "Kharwals," nud large quantities of salt used to be manufnctured. This was before 1877, when I triangulated the country, and at which time the lakes were perfectly dry. This yenr, owing to the henvy rains, all the lakes had water; the larger of them is $7 \cdot 1$ square miles, and the smallest 24 square miles iu area.The largest portion of this degree, lying to the south-west, is an extensive sen of rolling Sand hills. sand ridges of a uniform height of 100 feet. Strange as it may seem, the people of the country prefer to cultivate urops in this sort of ground; and with a good monsoon, rich crops of bajra, mót, nad til are produced.

The fruit of the country is the matira, a luscious sort of water-melon, the seed of whioh Fruits. is said to hnve been imported from Kabul. It grows almost wild, and is the great mainstay of the people and the cattle, who make use of it as food ns well as to quench their thirst.

The produce of the oountry depends upon the season's rainfall. Bajra, mót, and til Produce. grow well, and wheat in small qunatities is raised where the ground is favourable. Melted butter (ghee) is also exported.
The population is partially agricultural and nomadio, the latter preponderating. Large
Munners and customs. flooks of sheep, goats, and herds of cattle and camels are raised. 'I'he oxen are short, but seem to be particularly strong.
It is surprising to see a yoke of them dragging a heary cart laden with large "gharas" of water over heary sand and aoross country coverod with low sand ridges. The cattle, owing to the soarcity, are only given water once in three days, and for the same reason the habits of the people are exceedingly dirty. The men and women of Rajputana are, I thinks, the most unsnvoury creatures I have ever seen, even dirtier than the Thibetian coolies enployed on road-making at Simla. All the people smoke, and men, women, and children are, without exception, opium eaters.

As may be expected, the country has no forests, but large tracts are especially reserved Forest. for the growth of timber for house-building. The largor kind of trees, are, bair (Zisyphus juyubu), babul (Acacia Arabica), and khejra, also of the nccacia kind. These reserves are cared for, and treos yielding timber of 12 feet in length by 8 square inches are obtained. But owing to the plentiful supply of slabs of sandstone, the thakurs and mahajans build their houses entirely of stone.

Salt used to be plentifully manufactured until it was put a stop to by the Inland Customs Department. Woollen serges of different qualities are also made, but are not exported. The rude village loom is employed in making them, and it is surprising to see how good a material is produced, almest equal to military serge. Coarse felt is also made, and is chielly used for padding camel saddles.

The climate is particularly fresh nnd healthy from 15th November to February; nothing

Climato.

 better could be desired; a cool refreshing breeze blows all through the twentr-four hours. During these months rude health is enjoyed by every one. During the night it is bitterly cold, and water gets frozen inside the tent. With February a decided and sudden change comes on: the thermometer rises every dny; and in March sandstorms are very oommon. The misery experienced during this tirne can only be described by one who has had experience of it. The eaud penetrates everything, including eyes, nostrils, and enrs. 'The box of clothing, and even a strong iron despatoh-box, is not proof againat its penetrating power, and as a consequence there is no partaking of a meal ns long as it lasts, as everything cooked grates under the teeth and makes the blood curdle. My esperience of Kájputána only extends up to the end of April; but I would presumjo the hent must incresse greatly later on, and life must feel a burden to him who has to reqain there. The salt people, with whom I apoke on this subject, and who live in a paka horise at Agar, told me they bave experienced the sandstorms for deys, and that it was impossibse to keep their khar-khas tatties wet for any time, the lake water thrown on them turning into. fine enlt from the inteuse heat of the wind.Degree sheet xIX was also partially surveyed during this season, and the triangulation

> Degreo sheet xix.
extended through it, and also degree sheet xvir. These
two degrees are sparsely inhabited, xyIII being almost if not a howling wilderness. Sheet xix contains parts of Jodhpore, Bickaneer, and Jeysulmere.
 eastern representing the sand, and the western the hard soil consisting of annd and clay. Water is very scarce in the whole of this degree, and especially so in the northern half, which is also very sparsely inhabited.

The ouly two large towne are Phalodi of Jodhpore and Báp of Jejaulmere; the former lans a pata walled encloeure called a fort; it is a place of importance and a tebsil, and water is plentiful. Báp is also a tchail, but in rppearance it is little bettor than a village; there is a fine tauk of water at this place.

Phalodi	
Bap	\cdots.

Between both those places, 12 miles north of Phalodi and 6 miles south of Bap, is the Agar Salt Lako. dry salt lake of Agnr. This place has now been selected and made intos a depôt of the Iuland Sult Custome, nud is ofticially known as P'Lalodi ealt source. 'I'here is a large late here, about 25 square miles in area; it is generally dry, but during a heavy monsoon containg water to the end of May. The salt is made by evaporation of water in large paus; the water is drawn from
wells which are surk in the bed of the lake. The water is reached at 8 foet below the surface; it is exceedingly salt, and readily evaporates and forms into salt in the pans.

Degree sheet xvini might well be called a"terra incognita;" it is the worst bit of
Dogree sheet xwin.
desert ground I have seen. It is almost devoid of villages,
and water is excerdingly scarce: very frequently a well of water only occurs in 270 square miles. In this degree I frequently came upon wells yielding poisonous water; it is very very cautiously used by the people, and only taken after a good meal, and even then most sparingly. If freely drunk it acts as a violent emetio and aperient, aud frequently causes death.

Cattle are watered from it but sparingly, and only once in three days. In some villages

Tánkíe or rescrvoirs.

 the rain-water is carefully collected and preserved. This is doue by sinking a cistern in the centro of a funnel-shaped enclosure of some hundred yards in circumference; the rain-water rushes down the slope and collects in the cistern. These cisterus are covered over and jenlously guarded; they have a door on top of the covering, which is kept elosed and locked. I was told that a man or animal poisoned with poisonous water, if early taken in hand aud given a free draught of this raiu water, alwnys recovers. These cisterns or wells are called by the people "tánkás," and, as might be expected, are much valued by the people of the onuntry; and it is not till thoy are coerced by the valkil that their existence is made known. The water in them is olear and deliciously cool and fresh.Although Rajputána is in many places a perfect desert, sport in some form or other is plentiful. The Chikara, a small species of deer, is very common. They are to be met with in numbers, more especinlly in the grounds belonging to the Bishnoies, where they are as tame as goats. This is the only large game of the oountry ; but bustard, both the giant aud small species, as well as florican, can be shot. Partridges aud grouse are plentiful. The blue pigeon and the peacock are more or less domestio birds, as they are worshipped by the people; and although the sandy plains can't afford anything of the picturesque to a desert village, still the large numbers of these birds, especially the peacock with its gny plumage and fowing tail of gold aud azure, lend a cheerful aspect to these otherwise uniuviting habitations.

Rájputána, like most parts of India, has a misture of the various forms of religious be found in the same village with the other castes. These people hold sacred everything, animate and innamate, carrying this beliel so far that they never even out dowa a green tree ; they also do all in their power to prevent others from doing the same, and this is why they live apart from other people, so as not to witness the taking of life. The Bishnoies, unlike the rest of the iuhabitunts, striotly avoid drink, amoking and eating opium; this being prohibited to them by their religion. They are also stringently enjoined to monogamy and to the performance of regular ablutions daily. Under all these circumstances, aud, as may be expected, tho Bishnoies are a well-to-do community, but are abhorred by the other people, especially as by their domestic aud frugal habits they soon get rich aud are the owners of the best lands in the country.

Extract from the Narvative Report of Major H. R. Thuillier, R.E., Deputy Superintendent, Survey of India, in rharge No. 8 Topographical Party, Ifysore Survey.—Season 1881-82.

The country topograplically survejed this senson may be conveniently divided into Itemaris on the country two classes, each of which has distinctive features. That in sheets 2, 19, 23, and 24 in the Shimoga and Kadur districte, exeouted by the European assistants, oomprises an area of 1,460 square miles, and is of a similar character to that previously surveyed in the Malnád, consisting of forest-clad mountains and valleys presenting alternations of varied and charming scenery, but dense foresta shut in the view and render the survey of these parts not only difficult, but slow ; planetable intersections from surrounding fixed points onnnot be obtained, and work has to be done almost entirely by traversing with the chain. The twin rivers Tunga and Bhadra run through sheets 23 and 24, aud meet at the northern edge of sheet 23 , from which point they baoome a united strenm oalled the 'Tungabhadra; and the Sharavati river flows in a northwesterly direction through sheet 2 till it renches the ghats, where it preoipitates itself down the calcbrated Falls of Gersoppn, the largest of whioh descends in an unbroken column to the depth of 830 feet. The Biba Budan mountaius, the loftiest range in Myeore, ekirt the southern edge of sheet 24, and rise like a gigantio wall to a height of some 4,000 feet above the general level of the country to the north; the summita are clear, but their slopes and watercourses are thickly oovered with valuable forests, giving shelter in parts to coffee cultivation. With the exception of a small portion of open country about Shimoga in sheet 23 , and around Tarikere in elhect 24, the whole of this area is covered with deuse forest and jungle. The difficulties and delays which arise in surveying such country have been previously described, and it is ouly necessary to add that the obstacles met with in the shoets above allnuded to were as great as those experienced in former seasons, and that the same care and patience have been bestowed in overooming them. Sheets $10,11,14,1 \overline{0}$ in the Chitaldroog district, nud 30 in the Hassan district, comprising an area of 2.766 equare miles, are in the Maidau division or open country. This portion of the Chitaldroog distriot is almost throughout
a barren and dry land. It is inoluded in the valley of the Vedavati or Hagari, whioh during the hot months is for the most part dry. The general level of the ground is nbout 2,000 feet above the sea. It cousists of great undulating plains, traversed by a belt, about 20 miles broad, of approximately parallel chains of hills, mostly bare and rocky, the highest point being 3,863 feet above sea level. Trees are few in number, aud the low ground, where not cleared for oultivation, is covered with stones and a dwarf speoies of mimosa Water is scaroe, and the olimate, as oompared with other parts of Mysore, is drier and hotter. The greater part of this area was executed by the sub-surveyors, and is for the most part open and eary, where the plane-table was utilized to its best advantage, and the chain hardly ever needed.

The programme arranged for the season's operations proved to be somewhat more than could be got through, and sheet 2 had to be left incomplete. Nevertheless a larger out-turn was oompleted General remarks. than had yet been nocomplished, and this with a reduced European staff. The suocess of the senson's operations was in a great measure attributable to the good health of the surveyors, who were able to work uninterruptedly throughout, and also to the energy they displayed in taking every advantage of it. The whole of the work has been oarefully examined, and that executed by the European assistants has stood the testa remarksably well, and was found to be accurately and carefully surveyed. The plane-tables done by the sub-surveyors were also found accurate as far as the position of the details was conoerned, and with two or three exceptions the general direction of the lines showing the configuration of the ground was found fairly correct, but the drawing of some of them is still crude. The general tendency with natives is to exaggerate the fentures of the low ground, and on this account I took epecial precaution to have a large number of well determined heights taken in a systematio way with a theodolite, over their work. In the five sheets which were chiefly executed by them in the open and undulating ground, 1,061 heights were observed, giving an average of one height to every 28 square miles. By the aid of these extra heights, in addition to those fixed trigonometrically, the draughtamen found no diffioulty in modifying the drawing in the fair maps. All the surveyors were furnished with the clinometers deaigned by Major G. Strahan, and observed beights therewith throughnut their work. But the results are more or less unsatisfactory, especielly in the ground where the variations of height are small, and having such a large number of theodolite heights there was no necessity to utilize them. I have endenvoured to adhere to 50 feet vertical intervals for the contour lines as far as feasible throughout the whole of the season's mapping, and to follow out, as far as the nature of the ground would allow, the method of keeping the contours closer to the streams, as introduced by Major Strahan last year in sliefts 27 and 29 .

Extract from the Narrative Report of Major T. H. Holmich, R.E., Deputy Superintendent, Survey of India, in charge Kohat Topographical Party-Season 1881-82.

The plan of operations for the party (with the exception of Mr. McNair) was simply Plan of dotail. - Survoy operations. to resume plane-tabling from the line to which it had been completed the previous year, the starting pointa of the various plane-tablers being all more or less contiguous to the western boundnry of the Kobat distriot forming the line of our north-west frontier, and the general direction of the work from west to east. Mr. McNair formed no exception to the rule as far as bis plane-tal ling was concerned, but he had in the first place to fix extra points by triangulation over an harea of about 500 square miles, and in addition to extend a reconnaissance across the fronk wherover opportunity offered.

In order to gain a little time, Mr. MoNair left Dehra for the field in advance of the
Farty breaking ground in the field, \&e. rest of the party, at the end of November. Mr. Claudius (who took charge in the absence of the Deputy Superintendent) followed with the party about the 12 th December; nad the plane-tablers were at work by the end of December, commencing on dates varying between the 23rd and $30 t h$. As the field senson closed about the 16 th April, its actual length was thus reduced to a very short four months.

Mr. McNair's triangulation consisted in fixing a few secondary stations in points in the neighbourhood of Bahadur Khel, and iutersecting sufficient
Run of triangulation and arrangeantural objects to give him tho basis for his plane-tnbling and to determine a sufficiency of heights. The most impor. ments. tant point he rearked was the celebrated Kafir Kot peak, an aocount of which will
be found appended. On joining the party on the 4 th February, I proceeded to the north-enst corner of the district, and thero fixed a few secondary stations, which were sufficient, with the addition of such great trigonometrical stations as existed, to secure the triangulation of that (the only untriangulated) part of the district. Subsequent to inspecting and checking the topographical work of the party, l triangulated for the Kohat City and Cantonment plan, which, with reduction of supplementary heighta, and other computations, occupied the rest of the season.

The total area traingulated was about 500 miles by myself (independent of the city tringgulation) and 500 by Mr . McNair, or 1,000 in all. The secondary triangulation of the district exeouted
by Lieutenant Walker 30 years ago wns quite sufficiontly well marked to enable the triangulators to intersect a sufficient number of points from these stations to serve the purposes of topography. No previous reconnaissance was necessary, and no time or money was wasted in the erection of poles or points to intersect. The natural features of the country were abundant, and as the class of instrument used was no higher than the 6 -inch theodolite, they were sufficiently definite for the purpose. Of course, the linear errors are large-larger than they would have been had the instruments been perfect of their sort, but not too large to affect the results as the basis of topography on the oue-inch scale.

The oountry triangulated to the north between Khushalgarh and Attook is remarkable for Remarks on the country triangulated nothing but its general roughness. It is fairly open and free from anything like heavy jungle. The Jawaki and Pesha war district hills close it iu on the west with a long, continuous, rugged line of peaks, running to an altitude of between 4,000 and 5,000 feet. On the east the river Indus forms the boundary between the Kohat and Rawalpindi districts. The river between Attock and Khushalgarh is always picturesque, and often grand in scenory. It flows between steep rocky banks formed by bands of many-coloured limestone fringed with patohes of deep white sand. There is not much vegetation-a few seattered tamarisk-trees, and an occasional grove of stunted olives, are generully all that can be seen from the river banks; but here and there a patch of oultivation slopes down to the river and modifies its excessive wildness. A spur from the Jawaki hills, called Nilabgash, extends eastward to the river, and is the only obstacle to a fairly level line between Attock and Khushalgarb. A road exists already, ruuning nenrly parallel to the river, without which this portion of the Kohat dietrict would be difificult to traverse, from its extreme ronghness. It all belongs to the Khattak section of the Pathan tribes. The country triangulated by Mr. McNair oonsisted chiefly of the flat, open, sandy distriat which extends sonthward from Latammar to Bannu. Its flataess rendered it difficult to find or fix points along the western edge of the district, but the few that could be fixed were sufficient, with the well-known peaks of the Lawighar hills on the east, to enable Mr. McNair to plane-table all this area. The peculiarity of this part of the Kohat district is its waterless character. In the month of March the Kummer wells form the only water-supply for a distance of from ten to sixteen miles round, and the daily collectiou of people (eliefly women) at these wells in the early morning rather resembles a mell (or fair) than anything else. The water is carried in small gont-skin mussaks on the backs of donkeys, long strings of which, driven by women, who aro generally handsomely dressed, with a profusion of silver ornaments on their breasts and arms, may be seen in the early morning, converging to the wells from every point of the compass.

The country plane-tabled consisted of the upper valleys of the Kohat and Teri rivers,

Remarks on tho country planc-tabled.

 the Surdág bills, and the Lawághar hills, with the lowlying plains at their foot on the west, bordering the Bannu district. All the smaller tributaries of the Kohat river, as well as the main stream of the Teri, flow generally from west to east towards the Indus, in approximately parallel lines, and through narrow valleys fairly well oultivated by means of irrigation The litls dividing these valleys are rough and precipitous, their apparent formatiou being limestane, above which occurs a rock clisely resembling laterite, which may be the pisolitio ferruginous clay referred to in page 563 of the "Manual of Geology of India." There is often great apparent regularity of outline, both in section and plan; and where the strata dip at any oonsiderable angle, there is usually n sharp knife-like ridge defining the summit, which is diffoult to traverse. But rough and difficult of access as they are, they are entirely free from heavy jungle, and possess great command of view over the surrounding country; so that this part of the district connot be oalled difficult for plane-tabling. The general level of the oultivated portions is high, between 1,040 and 2,000 feet above sea level, and the olimate cool and pleasant. The Surdag hills, stretehing enst and west below Bahadur Khel, are diffierent in formation. They are red and purple olnys and sandstone, overlying large masees of grey rook-salt, whioh is dug out of them for trade. They are peculiarly intricate in oharacter, breaking up into minute detail, which is tedinus and troublesome to define topographically. But they are also free from jungle : and difficulty of detail, when that detail is visible, is not to be compared to the difficulty caused by heavy jungle. The Lawághar hills are wholly sandstone, and run parallel to a rango of hills called the Sarghar, which is almost wholly limestone. They are difficult of access, and the labour of making way about them is severe. The low ground west of them is open plain, almost entirely under dry cultivation, but very destitute of waler. Throughout an area of some 300 square miles water is only to be obtained at 14 (out of 140) villages, chiefly from decp-sunk wells.The only fort or town of nny importanoe in the district are those of Kohat itself and the Maranzai valley. The town of Teri is prettily situated on a small hill bordering the Teri river, and it contains a few strongly walled buildings. 'The command abovo the river is alout 100 to 150 feet, but it is not a place of muoh importance. The chief lines of hills in the district have already been referred to. The ridge, of which Halwat aud Swani Sir are the two principal peake, the Surtang line of hills, the Surdag (nlrendy desoribei), and the Jawighar, are the most definite of these manor hill systems. The Surdág pass, connecting Bahndur Khel with Latammar, is the only one of any importance falling within the limits of lust season's work. Of other ranges it would be safe to reoord that they are impracticable. The Surdég pass is only a part of the main frontier road connenting Kohat and Bannu, and ns such is well known and irequently traversed. None of the rivers
are navigable. They flow down to the Indus through steep, rooky defiles and high bauks, and their beds seldom even afford foothold for a narrow path. 'The beds of the Kohat and the Teri streams are never absolutely dry. The Bungush and Khattak tribes divide the whole district between them. Both of them are Pathán or Pashtu-speaking people, and in manners, habits, \&o., it is not easy to distinguish between them. As a rule they are frank, pleasant people to deal with, and there was not a single case of dispute between the surveyors and villagers during the last field season; but they are true Patháns, with regular Patháu love of border fighting and raiding. Blood feuds and reprisals are of oonstant occurrence, and lead probably to far more murders than the accidents attendaut on robberies and raids. In appearance they are a sturdy-looking, well set up race of men and women. Their dreas is flowing and pioturesque, and, in the case of the women, often very handsome and well set off by heavy silver ornaments. They prove to be excelleut soldiers in our frontier regimente.

Addenda fium a Report by Mr. W. W. McNair.

I have the honour to subwit a report of my roconnaissance of the tract of independent territory lying east of the Kurram river and immediately north of Edwardesábád or Banau.

The traot in question embraces an area of 350 square miles, and through it from east to west extends the range of bills generally known as Laki Juni or Kafir Kot. This range, which consists generally of conglomerate, terminates at each end in huge excrescences of grotesque shape, whioh rise considerably above the level of the ridge and strike the observer's eje from every direction.

The four most prominent of these exoresoences, perched as it were on the eastern end of the ridge, are collectively called Kafir Kot, an appellation which, I believe, mny signify either the "infidel's abode" or an "inaccessible nest." I am informed their summits huve bitherto not been reached.

One of the mounds on the western end of the ridge assumes a form not dissimilar to that of a well developed woman. This resemblanee appears to have received local recogaition in a legend, which attributes the peculiar formation to a forsaken maiden, whose prayer to be turued to stone was granted.

The heads of two streams, the Changos and Jangana, constitute the northern bnundary of the tract of oountry, the subject of this report. The easteru and western boundaries are the Changos and Kurram rivers, and the sontheru a range of hills through whioh burst the Kurram, Goumati, Barganatu, and Changos.

The two streams, the Chaugos and Jangana, flow some distance in opposite directions. The Changos, after proceeding eastwards for about two miles, turns sharply round to the south and finds an exit through a range of hills, finally joining the Kurrain six miles south of Bannu. The Jangada runs parallel to the Kafir Kot range of hills until it empties itself into the Kurram.

In my observations of the passes leading into the heart of this tract of country I was onreful to notice that there were no obstacles calculated to interfere with the progress of wheeled artillery.

Throughout the entire area of 350 miles I noticed only four villages enntaining permaneut dwelliugs. They were Goumati, Sapari, Shazman, and Garang; and I estimate there were nbout halt n dozen other villages which consisted ontirely of temporary structures.

The general aspect of the conntry is wild. Of cultivation there is very little. A very fair supply of water throughout the year, and grass in fair quantity, are to be had, but luel is scanty.

The inhabitants are sections of the Daresh Khel Waziris, and are divided into clans, of which the principal are the Hati Khels, Utmanzai, Umarzai, and the Spinkhi Turi and Gagan Khele.

In wister and spring as many as 6,000 fighting men are estimated to occupy the hills, but during the hot months, from May to September, scarcely 500 remain behind, while the main body betake themselves to Shawal. For subsistence I have reason to believe the iulabitants largely rely on robbery, carried out on che Bannu and Kohat border. Their reputation as highwaymen is great, and I thiuk I am right in saying they are a source of considerabla anxiety to the Deputy Commissioners of Kohat and Bainu.

This tract of country is an asylum for all the bad charaoters and refugees from British territory; and whotever the pice at which such men may secure shelter, the protection they receive is proof against all treaty obligation. On the occasion of my visit to Kafir Kot I was accompratied by some of the Nabab of Khattak's men, and from them I afterwnris ascertained that one of the Daresh Khels, who engaged a good deal of their attention, was a murderer aud a refugee from British territory.

The nstensible means of livelihood of the Daresh Khels is the anle of cattle and sheen, of which they possess large numbers, and the hiring out of camels. From the Banuu platus thry dinw supplies of the ordimary necessaries of life through permanent setulers located there by each of the above mentioned clana.
 and imured to the inclemency of all weathers. I have nut heard of auy of their numbers uceeptiug employment under the British Government.

Like all Mubammadans, their graves face north and south ; but whilst all other sectinns of Afghans erect two upright stnues-one at the hend of the grave and the other at the foot, with this distinction for that of a female, that they have the that face of the upright stone at the foot turned towards the north-the Daresh Khel Waziris place three stoues over the graves of their women and ouly two over those of the men.

Addenda from a Report by Ma. T. E. M. Claudius.

I have the honour to submit the following report of the working of the party during your absence from 2ith November 1881 to 3 rd February 1882, as aleo a few notes on the country plane-tabled by me. The programme left by you for the last field season was followed out as olosely as possible. With the exception of Mr. MoNair, who started a few days in advance of the party for Kohat, with the expectation of immediate trans-frontier work, and sub-surveyors Esuf Sharief and Kadar Sharief, who were emploged by the ordere of the Surreyo:-Geueral for about a month in plane-tabling on the half-inch scale a portion of the onuntry between Nagtiba and Mussoorie, the party continued working at the Afglénistán fair mapping till about the 10th December. On the 12th I started with the whole eetablishment aud rencled Kohat on the 15th. The usual preparations for field work were taken in hand at once, and all the plane-tablers, fully equirped, started for their respective portious on the 21 st. The plan recommended by the Deputy Commissioner, of supplying each surveyor with a responsible man from the polioe, with the authority for engaging a certain number of men picked from the ground on which each plane-tabler was to be employed, nnswered admirably, and was found even preferable to a military escort. Ou necount of a severe attack of fever, which is always prewalent in Kohat during the winter months, I was unable to start nyy own plane-tabling till the lst of January. Kadar Sharief, from an attack of rheumatism, was reported unfit for work a week after lisis departure, and continued in that state uutil your arrival. Mr. Warwick, who had been on sick leave, reported himself at Kohat on the 23 r d January, and on the day following he accomp:nied me on route to his work, while I prooeeded to inspect sub-surveryor Atma Singh, who had been making slow progress out of all proportion to that of the others. I found him employed in exceedingly intrioate ground, and it was merely his want of experience in delineating such ground that deterred his progress. He is very apt though, nad soou put into good eifeet whatever he wis told. On my return to Koluat, I was surprised to find that Mr. Warwiek was obliged to weud his way back on aconunt of a relapse of siekness. He was never able to undertake any field work after that.

The area surveyed by me, 260 square miles, inoluded Kolat itself on the northeast corner and the hill sanitarium of Mirkhwaili on the south-west; the former aurrouuded with smiling gardens and fields of luxuriaut wheat oultivation, while the latter surmounts a mass of exceedingly stony and rough hills. My out-turn, perlaps, would have far exceeded what it did but for the scarcity of villages iu my westeru corner, nud the time thus lost in tracing nad retracing my steps from and to camp morning and evening over rut-up and waterless tracks. The hill Mirkhwaili affords a cool retreat to a few of tho inhabitants of Kohat during the summer wonths, and but for the extreme difficulty of conveying building manterinls to the summit would, no doubt, be utilized to a greater extent than at present. The ouly respectable building up there is the one Major Cavagnari took the trouble of ereoling, and to this the fashionable society of Kohat are obliged to rosort by turns.

Thieving, cattle-lifting, and murders are of course of frequent occurrence all along the Kohat froutier, but I was very much surprised at the daring displayed by some Afridis at Kohnt in an attempt to stenl my horse in the month of April aiter the completion of my worr. Twice on the same night attempits were made, although on the first occasion they were fired at by my havildar and guird, and oue would have thought that, having aroused everybody's attention, the attompt would not have beep repeated, yet to our surprise a second and more daring trial was made to effect an entrance into the stable by digging a hole in the lack wall. This of course was swou heard and diseovered, but the thieres managed to make good their escape with a few ineffective bullets whistling after them.

As notes regarding my work of season $1850-81$ were not sent in at the proper time, I trust they will not be considered nut of place here. About a mile to the north-west of the well-known village of Jangal, latitude $33^{\circ} 37^{\prime} 11^{\prime \prime}$, longitude $71^{\circ} 12^{\prime} 10^{\prime \prime}$, there esists a most remmikable epring, situnted at the northeru baso of a hill which terminates one of the longest spurs jutting out from the Langardarra rauge. It is a delightfinl spot, with a splendid grove of immenne mulberry-trees growing around, and the large body of water, pure and clear as crystal, which bursts out of an excavation 5 feet long nad 2 feet wide in n perpetunl liow, gives the visitor a stroug disinclination to leave such a beautiful spot after traversing the sterile tract all nbont. Great care is bestowed on the clenuliness and nrrangements of the place; and not only has the usunl marvollous tradition been handed down from father to son regarding its origin, bui an extrn nmount of veneration and superstition is attached to the spot. The rery fish in the immense pool immedintely below the spriug aro worslipped, and nobody dare atterapt throwing in the "barbed liook with its dainty allurenent." "The story repented to me was that about 70 yenrs ngo "Kachai" ithe name of that part of the country) was entirely devoid of water, when "Mír Rahim Syed," a very religious and devout man, promised to obtaia the needful supply. A spring did exist, I believe, prior to Mír Rahim Syed's
promise, but the water which issucd was very scanty, and of a milky appearanoe. The Syed, however, determined to emulate Moses and his rod, nud after excavating a little himself, made good his entrance into the rock and disnppeared. For a whole week he was not seen, nor could any one pretend to conjecture what had become of him. During this time, however, Mír Rahim was not idle, for he managed to traverse more than a mile right into the heart of the hill, and after the lapse of eight days he reappeared, but about 100 yards away to the west of his entrance, and on about the same level. Immediately on his reappearance the magnificent flow of water which continues unabated to this day burst out with an impetuous rush, and so not only the whole of Kachni, but villages farther eastwards, have all a plentiful and wholesome supply., After this exploit some return was thought necessary by the inhabitants for Mír Rahim's miraculous work. He was very modest in his own request, for be ouly asked for a piece of arable ground as long as the shadow that would be cast from a wand of his. This was readily and gladly granted by the people, for they did not expect to get off so chenply; but to their indescribable astonishment, when the Syed planted his waud perpendicularly at one extremity of a feld the shadow stretched far away for miles. A colupromise was however made, and a tract of ground given him, whioh to this day is held by his descendants.

Regarding the passes into Tirah from the Kohat side there are three,-the route from Bar Marai, the Landukai pass, and the route along the Gorbin river. The Landukai pass is the most difficult, but the shortest, and the Gorbin river route the most feasible. From the village of Sheu, six miles north-enst of Hangu, the rond is traced alongside the Gorbiu river for about 20 miles until the large village of Kandi is reaohed. The route then strikes north neross the Senpaghar range, over a rather low hotal, or saddle of the hills, and thence leads right into the heart of this little known country. As far ns I could ascertain from numerous enquiries, this is the ouly road that, with little trouble, could be made practicable, not only for mounted batteries and cavalry, but also for laden camels.

Among the different clans inhabiting 'Tirah (of which a complete list is subjoined), there is, as usual throughout Afghánislán, a great deal of tribal animosity and jealousg. Constant bloodshed and pitched battles are more the rule than the exception; but perhaps the undying antipathy displayed by the Meeslties towards the Mania Khels and rice rersia is unsurpassed oven in Afglán feuds. I believe, as the former clan have invariably proved themselves the stronger, the latter have suffered so dreadfully at their hands that the clan is aotually approaching a state of extinction. While on Kudumb H. S., observing and reconnoitring, I witnessed a regular pitched battle below on the north side between the Feroz Khel and Akha Khel olnns, the former noting on the defensive. The attack was most determined, and the sound of musketry continued all day without interruption. I was glad I was not seen and disturbed, for I had a considerable descent to make and a great distance to traverse before reaching camp. This, however, I could not manage till 10 at night. The ascent was made at 3 in the morning. The whole of Tirah is well supplied with Snider rifles, and I came acrose a number of men on different occasions bearing well-cared-for Martinis. The owners were quite proud of their weapons. They boast that these rifles are plunder secured during the two last eampaigns, both on the Khyber and Kurram routes. For the Sniders they appear to have such an abundance of ammunity that cartridges are aotually bought from Tiralh by mon from our side of the frontier cheaper than they oan be obtained by them in India. The manufnoture of cartridges for the Martini has already been commenced by the Afridis of Tirah with great success, and I was shown oue thus manufactured. The onse is very similar to those manufaotured in Kabul during the seige of Sherpore, and although rather thiok and heary, would stand any amount of reloading.

Tirah.

Clans.		Approximate populntion.	Products.
Alikhel*	...	3,01)0	Rice.
Mamozai	...	3,000	Whent.
Shai Khan	...	2,500	Indian corn.
Mainkel	...	1,000	Potatocs.
Alisherzdi	...	3,000	Gram.
Mreshti*	...	3,000	
Raliakel	...	700	Walnuts.
Akhel	...	700	Grapes.
Mamizi	...	400	Penches.
Bar Mohnmmed Khel	...	2,500	Pomegranates.
Mani Kbel	\cdots	800	
Alnhl Aziz Khel	\cdots	310
Sipahi	50%'
Feroz, Khel ...	\ldots	600	
Bazoti	...	600

- Zusurznis, but combined with Uraknzais.

Ex tract from he Narative Report, dated 31st October 1881, of Colonel C. T. Haio, R.E., Deputy Superintendent, Survey of India, in charge Guzcrat Party.

Of the country topographionlly surveyed sheet 76 is almost entirely Baroda territory There are but 8 small villages of the Palanpur State. It is mostly flat and open, but in the north-enst oorner there are a few small detached hills and na area of 70 or 80 equare miles; in the south-east it is pretty thiokly wooded. The Saraswati or Kuwarika river crosses the sheet from east to west, and is a strenm of some importance. Its bauks are shallow, seldom more than 10 feet deep; but the width varies from 400 to 900 yards, with a oonsiderable body of water always flowing in a more or less narrowed channel with a velocity that strikes one as being excessive for the apparent gentle, almost imperceptible, fall of the country. The Rajputána Railway crosses the sheet from north to soath through the eastern half, where it taps a very populous district. There are two railway-stations in the sheet, Sidhpur and Unjha, which towas have respectively populations of 13,600 and 10,500 . About 20 miles to the west is Patan, with a population of 32,600 . There are two other towns of populations between 4,000 and 5,000 , two more between 3,000 and 4,000 , six between 2,000 and 3,000 , twenty-eight between 1,000 and 2,000 , and of oourse very many emaller villages. This part of the country is full of historical interest. Pátan is built on part of the site of Anhilwáda, the old capital of Guzerat before Alımedabad was built. Anbilwada is said to bave been a city 18 miles in circumferenoe, and the heaps of old ruins and bricks to be found for miles round Pátan seem to corroborate the statement. Sidhpur is a noted place of pilgrimage, and the remains of the Rudra Mala Temple of Shiva are an object of considerable archoological interest. Sidlpur and Patan are both on the Saraswati river, which is itself venerated as a goddess.

The area embraced by sheets 35 and 36 is divided between British Baroda, Bánsda, and Dbarampur territory. It is traversed by the Purna. Ámbika, Kíveri, and other smaller rivers, which, with their many tributaries and feeders, make tho country very intricate and difficult for the survegor. It is wooded also, and the east of sheet 35 and the adjoining strip of sheet 49 between it and the Dángs is hilly country. The railway-station of Bilimora is just iuside the western murgin of sheet 35 ; the railway, following the general trend of the coast, enters sheet 35 two miles north of Bilimora, and leaves sheet 36 about six miles to the south. From Bilimora is a made road of 29 miles in length to Bansdn, forming the ohief outlet for the timber from the Dángs. On this road, at six miles from Bilimora station, is the British taluka town of Chikhli, and about two miles north of the road, from a point about three miles from Bilimora station, is the Baroda town of Gaudevi, of some importance from its size, having a population of over 7,000. The State town of Dharampur falls in sheet 36 , having a population of 4,470 . The population in these parts consists largely of Blisis and such like folk, who prefer living in huts, apart, or in groups of two or three huts, which adds much to the surveyor's trouble, particularly ns the country is fairly thickly populated. Bilimora has a population of 4,442 , Chikhli 3,153, and Naldhara, a Gaikwari inami village, 3,650. Besides these, there are in sheet 35 and the half of sheet 36 , thirteen towns and villages of populations between 2,000 and 3,000 , and fifty of populations between 1,000 and 2,000, and a multitude of smaller villages ; but even the popalations of the large towns contain a considerable Bhil element, which is scattered in huts over the fields.

There is in sheet 35 a hot sulphur spring at a plase called Unái, on the boundary between the Baroda and Bánsda States. The following mention is made of this apring in the "Imperial Gazetteer," volume I, page 402:-"At Unái, within the limits of this (Bánsda) State, is a lot spring, the temperature of which is geverally but little below boiling point; but once a year, at the time of the March full moon, the heat abates sufficiently to allow e company of pilgrims and devotees to bathe in it." This is the popular account, but it states too little and too much. The bathing takes place on the day of the full moon of the Hindoo month Chaitra and the two following dnys ; and if during all the rest of the year, ns is commonly enid, the temperature of the water is but little below boiling point, bere is a miracle indeed; and the phenomenon is populariy ascribed to the power of the local goddess of Unái, Matha, in whose honour thousands congregate at an annual fair. I was in camp not far from Unai very shortly after the fair this year. The new moon ocourred on the 3rd April, and the bathing took place on that day and on the 4th and 5th. On the 11 th 1 took the temperature, wheh was said to have returned to its normal height on the 6th, and I found it to be 138° Falrenheit, considerably below boiling point. I was informed by a Báusdu official at the place that the bathing commences by a sudden rush into the watar of some hundreds of Bhils and others, who previously fortify thomselves with an intoxicant drug (bhang, hemp), and that this cools the water, so that the bathing oan afterwards be kept up by the continual stream of the visitors to the fair-men, women, and children-who plunge in but for a moment and so keep down the temperature, for they continue nll through the night. 'This is confirmed by a Mahommedan sub-surveyor who witnessed the first rush last year, If this is the only explanation of the phenmenon, to my mind it leaves it yet to be explained how people, in whatever numbers, can plunge into water at 138° without being seriously scalded, which does not uppear to be the ense, though, as has been proved on more thau one oconsion, a single individual falling in at any other time of the year meets his death. I was suspicious of some cold tap eapable of being turned on in the adjoining temple by a looal Brahmin on behalf of the loonl goddess, but could discover no njpearance of nnything of the kind. The spring is enclosed in a masonry tank or k hund 50 feet by 45 feet, in whioh the depth of the water varies from 4 to 6 fect. Tie Baroda and Bánsja State boundary passes along
the edge of the khund where it adjoins the temple, so that the temple is in Bánsda an the khund in Barodn territory.

The portion of the Dings survered this year consists of five sections of sheet 49 , numbered 7,13, 14, 15, and 16 on the index map. Captain Hobday, under whom the work was carried on, stntes that the olarnoter of the country is similar to what has been met with in forver years, but perhaps the features are larger as one appronches the Gbâts. It will be seen from the indes map that sections 14 and 16 reach the Ghats where the Guzarat survey meets the North Dcconn survey. The highest penks at this part of the Ghâts are between 4,000 and 5,000 feet high, and Saler fort, which is about a mile south -east of the south-enst oorner of sheet 49 , is over 5,000 feet. The chief river is the Purnn, which rises at Saler and traverses the surveyed area in a north west direction. The Enstern Dángs are more populous than the western, and the forest olenrances are in consequence more estensive. On the platenu there was a great soarcity of water, and what little there was, was very bad. One principul road, by no means a good oue, traverses the area survejed; it is the continuation of the rond from Bilimora and Bánsda to Garvi into Khandesh.

In the 42ud paragraph of my la.t year's report I mentioned an experiment made by Lieutennat-Colonel Leach and Captain Hobday with a water level, and stated my intention of giving the method a trial on a larger scale. I have now the satisfnction to report that out of the 10 plane-table sections surveyed in the Dángs this year 8 were contoured with water levels, and the method bas proved a success beyond all my expectation. The time taken to contour these 8 sections oomprising the south-east quarter of sheet 49, giving a contour at every 25 feet, was but very little moro than it would have required to have surveyed the oren on the old system; and now that the hands have been trained to the new raethod, I anticipate that they will be able to work quite as fast as on the old.

I must, however, here explain that the method differs materially from that of a rigoronsly contoured survey, inasmuch as that only tae few contours near the tops of the hills and at the foot of the slopes were actually rigorously surveyed. A great many sections were taken, the principal sections starting from and elosing on trigonometrically determined heights, and auxiliary sections emamating from the principal seotions were taken down all convenient spurs, and sometimes down very inconvenieut slopes when the convenient spurs were too far apart. The water-courses and the plateasx were of course carefully survejed as usunl, and the contours on the slopes were sketched in from seotion to section; the surveyed contours at top and bottom of the slopes euabling this to be done with great accuracy.

Extract from the Narratice Report, dated 20th August 1882, of Lieutenant-Colonel A. Pullan, Deputy Superintendent, Surrey of India, in charge Kattyecar and Cutch Party.
O_{F} the country topograflioally surveyed this season, sheets 17 and 18 are portions of General aspect of the country. the featureless salt "Raun" which I bave alroady described in former reports. Sheet 19 contains tho remarkible little ieland of Pachham. Having an area of 275 square miles, the island contains 19 villages, the largest of which are Khawada, population 1,222, and Kumria, population 525 . Two ranges of hills, called Kala and Gora Dongar, run almost parallel from west to enst. The island is surrounded on all sides by Rann aud waste grass, and on three by shallow water for 8 months in the year. During the monsoon shallow water encloses the islaud on all sides. The remaiuder of slieet 19 is Rann and the level grass steppes of Banni.

Sheet 20 comprises a major portion of Banni, a grassy plain, dotted hore and there with olumps of babul-trees art the buts of wandering herdsmen from Sind and Cutch.

Sheet 21 contains a portion of the Kann between Cutch and Bauni, together with the belt of fertile ground which slirts Cutch on all sides; the remaiuder of the sheet is mingled bill and valley, rocky and poorly cultivated.

The principal streams in this season's work are-1st "Nagmati," rising in the hills near Kera in sheet 22 and flowing into the Gulf of Cuteh; $2 n d$ Rivers. "Phot," rieing to the enst of Kera and flowing into the Gulf of Cutch at Navinal point; 3rd "Bhukhi" and "Sakra": these strenms rise in the hills south east of Bluj, Anwing south and effecting a junction one mile south-west of Bhadresar town, and falling into the Gulf of Cutch near that place; 4th "Khári," takes its rise in the hills south of Mankua in sheet 22 and terminates in the sand of the Rann near Sumrasar village.

Kala Dongar, the highost range in Cutch, is to be found in sheet 19. One penk, "Bnbia,"
Hills. rising to an altitude of 1,520 feet above een level. The other
Hills. ranges in this senson's work are "Warar," with an allitude of 1,125 feet; " Jhura," 1,062 feet altitude; and "Habo," 974 feet altitude.

The priucipal towns and villages in the season's work are-Bhuj (the capital of Cutch), a very pretty, clean town, pieturesquely situated in a wellTomus. oultivatod valley surrounded on three sides by low rooky hills; Bhujpur, population 2,892; Khnwada, the rrincipal town of the island of Pachham, populatiou 1,222 ; Niruna, a large village on the borders of the Ramn, population 1,44 ; and [Bbadrosar, population 1,943 , situnted on a ereek two miles north of the Gulf of Cuteli and remarkable for its very fiue old temple.

Extract from the Narrative Report of Masou R. Beavan, Officiting Deputy Suprrintendent, Survey of India, in charye Beluchistan Topegraphical Party.-Season 1881-82.

The work in hand on the lat October was continued without interruptinn, and con-
Plan of detail. Survoy operations. sisted of the detail survey, on the scale of half an inch to a mile, of the hilly country lying between Quetta and Kelat, adjaoent to the Bolan and Rodbar passes. I received orders to accompany a military expedition, under Brigadier-General H. C. Wilkinson, to open out the routes between Thal Chotinli and Dehra Ghazi Khan. I also took advantage of such opportunities as occurred for filling in, on the quarter-inch senle, portions of country hitherto unsurveyed, and for getting observations to complete the Sewestan triangulation.

The plan of operations already in force continued to work throughout the senson, the ouly exception being that less assistance was available from the Mulitary Department in the matter of transport and commissariat. 'This was partly due to the fact that our work survey parties were gradually working further away from the military line of communications, and partly also to the reduction of troops and the curtailment of the transport and commissarint establishments consequent on the cessation of military operations.

We continued, however, to receive assistance from the Transport Department till January, after which we were able to hire camels at Sibi for work in the lower country and in the Marri hills.

Owing to pressure of other work, and particularly the great importance of completing as much topography as possible during the remainder of
Triangulation. Arrangements for-, the field season, it was not found practicable to advance with the triangulation in a systematio manner, or to employ any of the party on this work alone, but overy opportunity was taken for oompleting the observations at the different hill statious selected for the purpose, as they happened to come within reach during the progress of the detailed surveys and reconnaissances.

In this manuer observations were taken at eleven stations, besides one hill (Bútúr), Triangulation completed. which was ascended and found to bo well adapted for a several of the cairns erected the provious season having been destroyed, hut considerable progress was made both in improving the accuracy of the triangles previously laid out and in extending the series, which, starting from three stations of the Beluchistan series south of Sibi, spreads itself over Sewestan and the Marri hilla, and "ill eventually join the Great Indus Series near Dera Ghazi Khan. 'Ihere is only one bill near Vitakri which has not been actunlly visited in this series of triangles, but observations are still wating at several stations in order to complete a satisfactory connection.

On the l-th October I received orders to accompany an expedition proceeding from Quetta to IVera Ghazi Kban ria the Saoura pass. I obtained permission to start ahead of the troops, and left Quetta on the 25th October, joining General Wilkinson at Shahrag on the 7th November. In this interval I took observations at Khost, H. S.. and succeeded in sketching in several portions of country that had hitherto been very roughly delineated. After this I accompauied the force on the march via Mandai, Shal, and Chamálang to Delara Ghazi Khan, which place we reached on the Ilth December. En route I visited and observed at 'Torgarh, H. S. and Dadar, I. S. (= Clamálang Sir:-Heaviside', and also visited Bútúr hill, but had not sufficient time for tuking regular observations there. 'Ihe results of my plane-tabling work during the maroh were embodied in a map which I prepared for General Wilkinson, and which has since been published.

On the lst January the office was moved down to Pir Choki, at the mouth of the Boian pass, and I weat on with the triangulation, risiting the following stations during the month of January:--Kirta, Great I'rigonometrical Station ; North Band, Great Trigonometrical Station ; Savgon, H. S. ; and Nari, H. S. At the last named station, owing to cloudy weather, I was unable on this occasion to seoure the observations I wanted, and had to visit it again later on. In February I observed at Khanki, H. S., and made arranneroents for continuing the survey of the Marri hills with an escort of Marris furnished me by the dssistant Agent. Mr. Corkery heving finished his work in the Rodbar pass, and being at that time in fairly good health, accompanied me, and we left Silio on the 13th Februnry. We marched cid Talli and Daho as far as Tatra hill, a few miles north of Kahan. I took observations at Bagrai, H. S., and Tatra, and we returued eia the Sart valley to the Chakar rivor. During this period it was neceseary to carry provisions with us, not only for our men and animala, but also for the Marris, who accompanied us, and grain for their borses. I had arranged for a fresh supply of provisions to have been brought out with the 3rd Native Infantry who were marching in this direction, and they were timed to meet us on the 3rd Maroh. They did not, however, leave Sibi till about the 6th, and my provisions were consequently delayed. I therefore decided to divide our party, and leaving the remuinder of our provisions with Mr. Corkery relurned myself towards Sibi, marching viä Quat Mundai, aud completing the observations at Nari, H. S., that I had been obliged to leave unfinished on the previous occasion. I retursed to Sibi ou the 13 th March.

The whole of the country in whiod survey operations were carried on prosents the usual chnracteristies of Beluchistan-dry and arid, with no vegetation; water very seanty ; only procurable in certain places, and generally brackish; bare rocky hills and stony plains.

The field season continued over 12 months; the party left Sukkur early in April Duration and close of tho fiold 1881, and continued at work till nearly the end of March season. 1882.

There was no serious sickness during the whole of this time, but most of the members of the party suffered from fever more or less, and owing to bad food and water were seldom free from dinrrhoen and mild forms of dysentery. Mr. Coxen had a serious attack of erysipelas, and Mr. Corkery was obliged to take siok leave to England in order to recover his health.

As explained above, the great object kept in view during the field season was to General remarks. get as muoh topography completed as possible, and at any rate to oomplete the map of the hilly oountry which lies between the Bolan and the Rodbar passes on the half-inoh scale. This was satisfactorily acoomplished, and the results are now ready for publication, and in addition to this a great denl of now work has been done on the smaller scnle of 1 inch = 4 miles for the purpose of incorporation with the maps previously published. To attain this result, however, it was necessary, in a measure, to suberdinate the progress of the triangulation, which is consequently still in a somewhat inoomplete form. When opening out a new country, a number of points fixed with moderate accuracy are of greater value than a few stations of which the positions are rigorously determined within an inch or so. The former can, moreover, be more expeditiously seoured than the Intter, and the observations necessary to secure rigorous acourncy con be taken at a future time if required.

In the Sewestan series the triangles have to be laid out on a large scale, the sides of several of them being 40 miles in length. This arises from the nature of the country, which contains a few prominent hills, and between them a broken irregular mass of smaller ridges. To establish stations on the latter is useless, as the rays from one to another get blocked by intervening ridges of equal height. Hence it becomes necessary to utilize for triangulation only the larger and more prominent hills, which are all mutually visible, but lying far apart from one nnother.

Under such conditions one might expect to attain a high standard of accuracy in the observations if onl Γ_{ζ} one could secure a clear atmosphere, but unfortunately this is very rarely to be had in this dry and dusty region. Thus it happens that frequently after a journey of seven or eight miles from camp, and a climb of 3,000 feet or so, some of the stations to which observations are to be taken are quite indistinguishnble in a dusty haze, especially if there happens to be a dark bnckground of more distant mountains. If in addition to this it should happen that the pile of stones which the observer is straining his eyes to deteot has been destroyed by wandering slepherds, the ohanoes are that he observes to some bush or rook, and does not find out till long afterwards that he has mistaken his point altogether.

Short Description of the Truct of Country in District Racalpindi, known as " Kula Chitta Pahar," by Lieutenant-Colonfi, D. Macdonald, Deputy Supcrintemente, Sureey of India.
"This ragge is in the shape of a wedge, entering the distriot (Rawalpindi) betreen Attock and Nara, where its width is about 12 miles. It comes to a point at its eastern extremity four miles due south of the Margala pass, and is about 50 miles in length. It lies in what is known as the 'Khattar' tract, so called after the 'Khattars,' on important tribe of the Awans."
"The 'Chitta' pahar is composed chiefly of nummulitio lime-stone, but the formation of many portions of its southern side is of soft sand-stone. The outer surface of the latter has, owing to the action of the atmosphere, assumed a dark, almost a black colour, giving it the name of 'Kala' pahar. The whole mountain is known as the 'Kala Chitta Puhar' (the black and white hills); but it is more generally called by the latter name."
"It is more or less thickly covered with 'kow' (wild olive) and 'phoollah' (acmia mosta). Grass grows plentifully on the lime-stone hills. A rioh lime is the most valuable production of these hills. The trees are excellent for fuel and charcoal."

The above paragraplis are quoted from Major Cracroft's Settlement Report of the Rawalpindi district, dated October 1864.

It is a wild and gloomy region, not wauting, however, in the pioturesque. The range at tho eastern extremity is composed of low rounded hills. Proceeding wostward, the hills incrense in height and become more broken and rugged in their formation. The highest peaks, some of which range over 3,500 feet ahove mean sea level, are to be found in the north-western corner, abutting on the river Iulus. The Indus forms the western boundary of the ramee, separating it from the Kohnt district. As a rule, the hills in the north nre higher than thoso farthor nouth. The former are rugged, precipitus, bare on their summits, and rise in huge masses abruptly from the adjacent plains. Between these and the more southern portions of the rauge are a few open valley, but not of any great
extent. Then sucoeeds a series of rocky hills, very broken and disjointed. In parts they consist of narrow, almost perpendicular ridges of rocke, running in straight nnd parallel lives with deep gorges between. Sometimes these ridges assume the most extrancrinary ourves. In one place their shapo is almost elliptical, enclosing an elevated and oval platean. This again is varied by collections of isolated and conical peaks huddled together in the most inestriconble confusion. Altogethor the configuration of the ground in this region is very remarkable and unusual. A storm chart suggeste a not innpt comparison.

It is a most desolate and inhospitable traot. Water is very scarce, and in the dry season hardly procurable, and of bad quality. It may at times be considered ns an almost uninhabited region. There are no large villages in the interior. Hamlets, ennsisting of half a dozen rude luts, nre few and far between, and only occupied during the rains, when water and fodder are procurable for cattle. The communications, once you leave the benten tracks, are atrocious. These foot-pathe, if they oan be so called, which connect one hanmlet with another, are hardly traceable on the rocky soil. A guide well aequainted with the locality is indispensable. These paths in their sinuous courses traverse all kiods of ground; they run over huge boulders, through clefts and fissures of rock, and along the dry and slony beds of mountaiu torrents by turns. Walking in these parts is certainly the safest, and often the only possible, mode of travelling.

The principal roads through these hills are four in number; by far the hest is Ω metalled road from Campbellpur and Attock to Pind Sultani on the Rawalpindi and Kohat road. This can be used for wheeled carringe throughout its entire length. Near its entrance into the hills, and again at its exit, are two halting places, where there are large seraies for native travellers, with accommodation for Europeans in a corner. "Choi" is the name of the camping ground to the north. The other halting place is "Lambadan." Midway, in the very heart of the hills, at a place oalled "Lall-ki-ban," is a bungalow on the road, ocoupied by a customs officer.

The other roads are-
1st. From Fatahjang, the head-quarters of a tahsildar on the Rawalpiudi and Kohat rond, to Hasan Abdal.
2nd. From Fatahjang to Campbellpur.
3rd. From Campbellpur to Gaggan, a camping ground on the Rawalpindi and Kohat road, one march west of Fatahjang. All these three roads are very inferior, and can only be partially used for wheeled carriage.
Animal life in these hills is not very plentiful., A species of wild sheep, called "orial" or "horial," is found in some parts. "Chikor," or hill partridge, are tolerably abundant. There is also a smaller bird, a kind of partridge, called locally "soosee." Sand grouse, both large and small, are found in large numbers in the adjacent sandy plains.

This region is nlluded to in Major Cracroft's report as a place "where crime Hourished." "Many deeds of violence," he says, "were perpetrated with impunity; the robber, the murderer, and the offender ngainet the State, found ebelter here." He adds "that it is only in recent years that life and property have become secure."

The heat in summer is said to be intense, and no wonder. This can ensily be accounted for by the absence of moisture in nny shape, the hills being oomposed of huge masses of bare rock, and the adjacent plains consisting of a sleet of almost unadulterated eand.

The total area of the tract known ns the Kala Chitta Palar, inolusive of hills and plaing amounts to 531.3 square miles. The following table shows how this area is made up:-

Government forest reserves					Squarem miles.
			...	\cdots	154.1
Sirdar Falteh Khan's jagir			...		$4 \cdot 3$
Fire Twenty-six Eighteen Bix	of ta	Rnwalpindi	\ldots	...	23.2
	dilto	Fatalijang	127.0
	ditto	A tack	$120 \cdot 9$
	ditto	Pindigheb	101.8
$\overline{\mathrm{B} i x}$			Total	...	53.13

Notes taken during the Field Season of 1881-82 by Mr. G. W. Janno, Assistant Surveyor, when engaged on the Forest Rescrue Surrey in District Tharravaady, British Burma.
The tract of oountry in which the survey party operated is known as the Thouezeh and Koonbeeling reserves. The former is bounded on the north by the water-shed between the Beeling Toung and Thonczel strenms, which is one of the main spurs of the Yoma; on the south by the Meening Kyonng; on the east by the Pegu Yoma range of hills; and on the west by the water-shed between Koonbeeling and Thonezeh streams, a continuation of the epur which forms its boundry to tho north. The latter, Koonbeeling reserve, is bounded on the north by the water-shed betwe n the Kadeen and Koonbeeling Kyoungs; on the south and enst by the 'l'lonezee forest reserve; and on the west by a demgranted line which is slown by mounds of enrth, four feet high, heaped round posts about fivo and a half feet high, on whioh are vailed zino plates with numbers out into them in the Burmese oharacter.

The Thonezeh reserve is in fact the valley of the Thonezeh Kyoung. Being almost surrounded by hills, the exhalations from the forests are so confined that this piece of country is more than ordinarily malarious. The differenoe of temperature experienced by the surveyor, who has perlaps been marohing during the great heat of the day aloug the Thonezel strean, when he reaches the summit of the Yoma hills towards evening and inlales the sharp breeze (whioh I have invariably observed prevails there from sunset to sunrise), is iudeed great, and is of itself enough to try a strong constitution.

This tract of country of hills and vale is for the most part covered with dense and nearly impenetrable jungle, and, as observed by the Assistant Conimissioner of Beeling, " is impassable for ordinary beasts of burden all the year round, and for men during a great part of it." The only olearances are those made by Karens; and were it not for the sis Karen villnges, which are all confined within one block of about 20 square miles in aren, the whole of the country surveyed is a lonely region, uncheered by the presence of man; and its perils are realized when one thinke of the sad fate of two poor khalassies belouging to the survey, one of whom, whilst out with me this year, survesing along the Yoma, was nttucked by dysentery, and was first missed when we had encamped for the night after finishing the dny's work. On hearing this, noxt morning, I ordered the mahouts, who were returning with the elephants to the standing camp at Weh village (as it was found impractioable to take them further into the hills), to pick up and talke the missing man, Bodhee, with them. On my return to camp, days aftorwards, I learned that he had not been found. As a batch of men were on the point of starting to remeasure traverse lines, they received strict orders to senrch all about the place where Bodhee was first mised, and n second party was also sent. Tho first failed to obtain any trace of him, but the latter discovered his remains within a few yards of the survey lines; they were partially consumed by jungle fires, which had also burnt his purse, for its contents, nine rupees, were lying under thie body. The second man, a line-cutter, while travelling through the jungle, bad felt feverish, and told his companions that he would seek for a little water, drink, and rejoin theru; but he has never since been heard of. He doubtless lost his way, and eventunlly perished from starration. It is unlikely that he has absconded to shirk work, as do some of the Boonias, for he was a well-conducted man from the North-West Provinces, whose friends have since written to know why he has not returned home for the recess senson. Moreover, he had left his belongings, cooking utensils, \&c., which for one of his class were valunble, at the main standing camp; besides a month's pay from Goverament, and other sums due to him from one of the establishment, have never been claimed by him. A third man was also missed early in the season, who, I now think, was lost in the jungle and died; but as he left no property in camp, and had little or no pay to receive, it is possible that he may have become frightened at the wild country and nbsconded.

Of the hills, the principal range is the Yoma (i.e. backbone). Its average height here is from 2,000 to 2,800 feet above sea-level. The width of the ridge at its summit is in most places but three or four feet. The sonthern and western slopes, and manin spurs in the same directions are, as a rule, more steep than those of the north and east of the range. So precipitous are they, that there nre but few places where one can cross from the Tharrawaddy to the Okhan side of the Yoma without cutting a series of steps to exable one to climb the ascent.

Among the more important streams which drain the Koonbeeling reserve may bo mentioued the Koonbeeling and its feeders, the Kyouktaga, the Shawdon, and the Hmya
 Nnt and Kadogway Kyonengs on its right hank, and the Yaygyee, the Gonyin, the Thubyoo, and the Bawlan streans on its left. Strenms are the only lighiways through the forests; with the excention of a few dragging tracks, it is by them that timber is brought down to still larger streams, till eventually it reaches, and is lnuded at the depôt where it is sold or sawn up. The dragging tracke, which for the most part run along the tops of some of the eppurs of the Yoma, are few in number. They are the rough roads over which logs are dragged by elephants or buffaloes to the beds of streans, there to await the rainy seasou, wheu the rush of waters carries them into larger rivers to be floated on ns before mentioned. One peculinity of these streams is their narrow mouths at the confluence with the large streams. For instance, when travelling nlong the Thonezeh Kymmen, the narrowness of the mouths of its feeders would lead one to suppose that uo streams worth surreying fowed into it. This is found to be an error on following up the seeming rivulets, for they are almost as wide as the Thonezeh river itself, their leeds often mensuring 100 and 150 feet in width. These are somotimes so nearly level and so veatly gravelled, that for some miles they remind one of a well kept drive through an English park; nt other places, they have tho appenrance of being paved with petrified trumks of gigantic trees. Where they are very rocky, or are broken by water-fulls, ns are tho Koonbeeling and Thanay Fymmess, they are not considered, from a forester's print of view, ns being "first-rnte dloating streans." The difficulty is often overeome lyy blasting the obstruction.

The forest is maiuly a bamboo one, hut there nre fnir quantities of teak, pajukadoe, pymma, thingan, and knuyin; whiist the bauks of many of the creeks are inlerlaced with cones varying in thickness from that of a man's arm to the smanllness of an iufaut's finger. Of the bambon there are aeveral varietios; if they are all valuable to the paper manufiacturer, as they nre eaid to be, there aro here suffioient quantities to keep his mills at work for years without going further alield. Bambons may be cut from the roservo by paying four aunas for every huadred. Withiu this portion of the forest reserves I have not seeu teak-
trees (tectona grandis) of any great girth, nor in any large quantitics: in fact, of two etrips of country, say a mile wide along the two sides of the reservo boundary line, I am sure that the one without the reserve holds more and better tenk than that which lies within. This is not likely to be true a few years hence, as Karens are allowed and encouraged to clear and cultivate for their own use, temporarily, any suitable portions of jungle land, on oondition that they plant them with teak, for which they are paid at a liberal rute per hundred.

As respects size, the most striking tree is the kanyin, known in India as the gurjantree. From it is extracted an oil said to be a cure for leprosy. It is also used by the people for their lamps and torches. The Assistant Commissioner of Beeling says thet "in manufacturing torches decayed wood is triturated and saturated with the oil. This is then rolled up in leaves of the paloo palm, much after the fashion of the ordinary maize oheroot, and tied up at intervals of two inches with bamboo withes." When burning, they give out an aromatio odour. They sell for about three rupees a hundred. The method used in extracting the oil is this:-Two or three notches are cut into the heart of the tree; from the lower portions of these notches the wood is scooped out, forming a rude cup; fire is then applied inside the notohes, the heat of which onuses the oil to exude into the hollows, from which it is removed in earthen vessels or in hollow bamboos. At night, in the depths of a dark aud dismal forest, it is a weird spectacle suddenly to come upon half a dozen nearly uude natives extracting the oil; their faces look distorted iu the lurid light of their torches, while in silence they move round their blaok and gigantic victim. It deludes one into believing oneself a witness to the sacrifice of a human being to some bloodthirsty deity.

A peculiarity of these forests, whioh is sure to be remarked by any one who has roamed much in those of India, is their searcity in fauna. There are a few pheasants, partridges, and jungle-fowl, some beautiful birds as the trogon and parrot, and also some gorgeous butterfies; but deer and the larger fere aro rarely met with to the west of the Yoma hills, although the forests on their enstern slopes have been called the bomes of such avimals. That elephants and wild buffalo abound on the Okhan slopes I an convinced, as I have seen numerous tracks of both animals, and have even heard the trumpetings of the former. Here I would mention that I have both seen and heard guinea-fowl in these jungles. In doing so, I am aware that it will be said I have mistaken the silvor pheasant for that bird; but, as others have on several occasions recognized them too, I can only think that, if they are not indigenous to this oountry, they must be the descendants of birds that have osoaped or been freed from captivity.

From the almost total nbsence of animal life in the Thonezeh forests, day is oppressive in its solitude; while to the silence of the night is added an abnormal darkness, due to the density of the undergrowth and overhanging foliage.

The Karens, the only inhabitants of these parts, are a wandering raoe of people, who remind one very muoh, frow their similarity in features, clothing, and linbits, of the Mechis of the Western Dooars of north-cast Bengal, aud the Tharoos who live in the Tarai of the Oudh forests. In passing, it may be worth remarking that "Taroo" is the name by which one of the clans of Karens are known. The men are of finer physique than the Burmans, and the Karen women more handsome than the average good looking Burman lady. I have not seen one deformed, nor even thin, person amongst them. The olothing of the men consists of a cotton garment closely woven in one piece ; this is almost identical iu shape with the smook-frock worn by an English farm labourer. It is asually of tro colours, a dull crimson and a whiter brown, in alternate broad stripes horizontally, and renches down to the aukles. The woraen besides this wear a petticont of the same material beneath it when out of doors; but, as a rule, when at home, they discard the tunio, wearing only the petticoat, leaving the upper portions of their persons nude. The children require no clothes; their fatness keeps them warm, decency being quite a secondary consideration.

A Kareu village consists of but one house built on bamboo piles from eight to ten feet above the ground, with bamboo mats for its walls, and bamboos, not grass nor leaves, for the roof. This house bas a passage from one end of it to the other, into whioh rooms open from both sides, the number of thom varying with the number of families iuhabiting, or having. a separate interest in the village, the size being regulated by the number of individuals in a family. Access is had to the upper part of the house by a very narrow bamboo ladder, or sometimes by a limb of a tree with a fow notches out in it to answer for steps. This is placed in so wearly an upright position that it requires somo agility to be able to climb it. The space below the house, literally the ground floor, is utilized as a kea-coop, fig-sty, dog-kemel, and latrine. It is therefore furtumate, on savitary grounds, that the Karens remove their tays, as these villages are called, to a more or less distant spot every year without exception. On these occasious tho old house is burnt, propitintory offerings are made to epirits, whioh the Karens believe may perhaps haunt the new location they have chosen; a great feast is enten and uumerous libations are poured out. The community in a body then take, up their residence in the new abode. The tay is known by the name of its living "Sockay," as their chiefs are called. On the denth of one chief, the village is renamed after bis successor. This oustom is common to the Juwhi. The Karen too, like the Mechi, has the habit of whudering at his own sweet will from place to place in the forest. When he oomes to a spot whioh takes his fancy, he outs down the trees, and, after burning them and the jungle, he sows rico in the asthos, barely sufficient to yield a crop which will suffice for the yearly cousumption of his family and furnish enough for the next year's sowings. He also
oultivates cotton for his olothing, a ferw vegetables, and some tobacoo ; while the small sum he realizes from the sale of betel leaves with an odd rupee or two, which some of them may ooonsionally earn from forest contractors, prooures him his luxuries, such as "ugapee" (fish paste) and the areon-nut. In a year's time he thinks he ought to remove to another part of the forest, where he repeats the operations mentioned above. It is as well therefore that, since the formation of this forest reserve, he has been obliged to oonfine his timber-cutting propensities to the cleariug of that land ouly whioh within certaiu ample limits has been set apart for him.

The Karens are filthy in their habits, dress, and persons. They are, as a rule, extremely indolent. Sowing and renping their crops and building their houses ocoupy very few of the twelve months; their spare hours, when they are not drunk on liquor distilled from rioe, are spent in smoliug and gossip. The women weave oloth and make very neat and durable baskets, the shape and make of one kind is identical with the "kilta" made by the hill-men in the Himalayns, aud resembles an exaggerated strawberry pottle. The Karens evince great curiosity on the oconsion of an Europenn encamping near their tays. They come over and osk all manner of questions, iuspect his tent aud belongings, aud they will even touoh one's clothes to examine and descant upon the texture and quality of the cloth. Some to whom I shewed the figures of a pattern plate from the Young Ladties' Journal wore highly amused. They are a hospitable race as far as their means will allow, but have a disilike to selling fowls or rioe, probably becnuse the supply is limited in these parts.

In religion they profess to be Buddhists, but they seem to be very lukewarm in their belief. Knowing that many Karens had becone Curistians, I askel some of them why they too did not change their creed. They answered that no one taught them the new religion. I have heard that mayy of them, who were onoe converted to Christianity, have since relapsed to what, owiug to their ignorance of even Buddhism, may be oalled uothingism. Ibelieve that the preseat of a bottle of brandy would, for a time, decide the religious belief of a whole village in favour of any proposal by the donor. The Dritish Burma Gazetter gives grenter and more interesting details of the Thonezeh forests and its inhabitants than any I oould colleot in a slort field season.

Of the ditioulties in the way of surveying, siokness is the greatest-

> "For hot, cold, moist, and dry-
> Four champions ficree-
> Strive here for mastery'

The superabundance of water in the wet and its scaroity in the dry season, and the impossibility of procuring supplies on the spot, may also be mentioned.

Not only were malarious fever and dysentery very prevalent, but the khalassias suffered much from sore eyes nud avelled legs. The former is, I think, caused by the fluffy hair of the bamboos gettiag into the eyes, and the latter was most likely due to the scratohos of poisonous thorns, drinking bad water, or perlapas to scurvy induced by the sameness of diet for months together, with not even an occasional dish of vegetables to give a relish to the monotonous meal of rice. Two of the survey khalassies lost their sight, whilst many who were hale and hearty wheu they joined the party returned home crippled. The want of water in the hot weather is a great hardship. It is not so muoh that water is scarce, as being unable to find it when it is required, that constitutes the dilioulty. The time and toil spent in searching for it down the valleys, after a long and hard day's worik on the hills, is very trying, and having to elimb the nseent agnain and then oools their food robs the khalassies of hours of well deserved rest after the fatigues of the dny. And often wheu the water is found it looks like a strong infusion of tea, and is most likely impregnated with hacilus unthracis, the fatal germs of splenio fever.

As regards supplies, they must all be imported from a distance. Elephants may be employed to bring then to the foot of the hills; but onee arrived there, porters must be exclusively engaged ; and as one man can only carry sufficient rice for the consumption of himself nud two others, 'it follows that a surveyor's squad, which has usually eight men in it, wust be increased by eight others, when startell on a piece of work which it will take fifteen days to complete. This and the short period during which work can be oarried on in this part of the country materinlly affect the season's out-turn.
of purt of the Bu'm\%-Mrmipur lonndary, deted Fobruary 1882.

I have the honour to send the following report on the survey of part of tho BurmaManipur boundary.

Mr. Ogle (who was deputed with me for this work) and I left Shillong on the 4 th of November with a sullicient number of survey khallnssies to carry our instruments, nud 59 Klasia coolies for the carriage of all baggage, pullio and private. Our intention was to lave made four marches eastward from Shilloug through Jowai and along the old Asalu road, and then to have turned south-east townrds Cachar, by doing whioh we would evoid all but one march in the plains, which it is always adrisable to do when travelling with hillmen as ooolies. But ou arrival at our fifth halting place we found that the village had cirtainly been moved from the place it usend to occupy acoording to the map; and as we went farther wo found on euquiry that the whole of the conntry south of the old Asalu
road betweon the meridian of 93° and the western boundary of the Cachar hinls was quite deserted, all the inhabitants having moved eastward. As our supply of fool depended on what we could purchase day by day, we also had to continue our march eastward through the populated comutry nearly to Gujong, the head-quarters of the sub-division, before we could find a path to take us to Cachar, where we arrived on tho 15 th November. Here we found that it would be necessary to carry our supplies with us for the seven days march to Manipur ; and as the Deputy Commissioner would supply no coolies except at the prohibitory price of Rs. 50 a load (oach oooly carrying half a load and receiving Rs. 25 pay), we had to wait for men from Manipur, which delayed us just a week. We arrived at Manipur on the 27 th November.

Fir the next eight days our men were employed in clearing and putting up signals on old stations and at points chosen by us for our triangulation; and on the 6th and 7th of Uecember, respectively, Mr. Ogle and I left Manipur to carry forward the work.

Starting from the stations of Yongbalong-Kong and Phunan in the Manipur valley, we arranged to carry a series of triaugles eastward to the neighbourhood of the Kungal thana on the disputed boundary, where Colouel Juhnstone, Political Agent and Boundary Commissioner, had established his camp, Mr. Ogle taking the northern stations of the series, and myself the sonthern.

For the first threo daye after lenving Manipur I had nothing but trouble. On the morning of my start my coolies were late, as is usually the case when making a fresh departure, and we did not ret off till nearly uine o'elock, which was a bnd beginning, as they had a very long march of 25 miles before them. My own route led by a detour past the Phunan hill, ten miles south of Manipur, where ny triangulation was to begin. Aftor climbing Phunan to the station and setting up my thendolite I turned the teleseope to search for the first of my new statious, and fom that the hill had not been tonched, but that, through laziness probably, my cutters must hare ben taken to a low hill at half the distance. on which I saw a sigual put up. I arrived in camp by torchlight. Ny Khasias came in after nine at might, and the Naga coolies with provisions, not at all. On the two following days I was taken, much against ny judgront, a long round in senrch of the hill I wished to put up my station on, and at last reached it to find that I was ouly half a march from where we had started. After this I had an explanation with Soppa subadar, who had been sent with me as manager of cutters, cariers, and supplies, and had very little tronble of this sort during the rest of my journey, for which, indeed, I am much indebted to him, as without his excellent managenent I should certainly not have accomplished so much as I have succeeded in doing.

I was much disgusted on the night of my first march, as well as on several occasions afterwards, by the conduct of the Manipuris towards coolies and their Naga tributaries genernlly. There is much good, no doubt, in their rule over their Nagns. They prevent them from slaughtering ono another, protect them, encourage them in agriculture and trade, and emplny them as auxiliaries aud in repairing and opening ronds; and among themselves tho Nagas seem well-to-do and happy enough, but the Munipuris treat them like dogs. On this oceasion the man in charge of the thana would give my coolies no firewood. Looking as I do on my coolies as the legs and arms of my service, on whose wellbeing the surcess of my work nainly depends. I was particularly irritated, and the more so because I could not help them, as the man snid that thero was no more, whioh I kuew to be untrue. It was 10 o'clock on a pitch-dark night so there was no use in their going out to search, even if they had bad no narch to tire them during the day. I did what I could for them by giring them the wool that had been brought for my oamp fire, but mo khallassies did much more: they gave what had beon given to them for cooking and went dinnerless to bed, and they did this of their own free will and without my knowing of it till I heard it casually next day. This illtrentment of coolies is not an exceptional case. It happened whenever it could happen; and it is the rule that a cooly shifts for himself in them matter of fuel and food, no matter where he may be. Towards subordinates the opipuris are alwass very overbearing, and they are very inhospitable to every body. At the sof one of my last marchos back to Manipur, I arrived in the evening at a thana where e a guded to halt. Sfter a little talk with the thanadar I proposed to rest myself in the I petill my namp came up. I was told that I oould not do so, but that a cow-shed would
thi siod out for me to sit in. I hope that all my remarks on this were faithfully translated be peterpreter; not knowing Manipuri I caunot say, but some were, os they began to by ${ }^{2}$, it and turned some of their men out of one of their houses and made me buse a in it opposita a good fire
comis vid village. There I encamped on the second day of my maroh I saw some trophies
At gn broues by men of tho village who had been among the Kuki contingent which have Johnetfino took to relieve Kohima. They were two Naga skulls and looked which Co'r tastic, as the small trees ou which they were set up had, either through particulark esign, been so cut that two branches only remained, and these with their twige necident $c a$ a and fingers stretched out and thrown up in the air.
looked likide been able to do more than a little triangulation at Phunan, my work
Not - ${ }^{\text {Lithe }} 9$ th at Sanaching hill, whioh I made my men and the Nagas from the actually beffor ant so hard, that though it was covered with forest I had it cleared and a village ned od inext day, and was afterwards able to do some good work, at the signal put tainik dagain fiuding my way to my camp (which I had sent on) by torohlight. expense, ho
On the two 110°. $\sin 4^{\circ}$.
clenred, set up a signal at, and observed from a hill named Manohuibung. Up to the 18th I was engaged in having two more hills clenred for stations, and in returning to Sanaching and Mauohuibung for their triangulation. As Colonel Johnstone wished me to come to his oamp as soon as possible for the actual boundary work, I worked very hard here, and I think nlmost the hardest day's work I have ever done was in reobserving at Snnaching. I left my oamp at the 'Turet river, went up the hill, did my triangulation and plane-tabling, and came down agniu. The distance was abont eighteen miles, with 4,500 feet up and down again, and it took from suarise to near nine o'olook at night. On the eveniug of the 18th Decem. ber I arrived at the Kungel camp at the northern end of the Kabu valley, where the disputed boundary, which the Commissioner had oome to settle, lay; having up to this olenred five stations, observed at three, and plane-tabled about 280 square niles of half an iuch to the mile topegraphy.

During the nest fer days I reconnoitred the boundary with Colonel Johustone and sent working parties to endenvour to olear two points on the Angoching range, whioh lay on the enstern side of the Kabu valley opposite our onmp. The range is in Burmese territory, and my men were sent merely as an experiment, and unarmed, to avoid any ohance of collision. They were turned brek by arned patrol partios of Burnese. Mr. Ogle oame into anmp on the 24th, having cleared and observed at four stations and plane-tnbled about 200 square miles, which, joining on to the north of my work, completed both the triangulation and topography of the country between the Manipur valley and the disputed boundary.

These days of oomparative rest were very agroeable after our hard work, and we all passed Ciristmas together. Besides Colonel and Mrs. Johnstone we had in our camp Mr. Phayre, Assistant Commissioner; Dr. Watt as Botanist; Mr. Oldham as Geologist; Captain Angels, of the 12th Khelat i-Ghizzaies, of which regiment we had 250 men as well as some police; Lieutenant Dun, of the Intelligence Department; and Mr. Ogle and myself, of the Survay: and with so many together, and of varied idens, the time passed very pleasantly. Colonel Johnstone was meantime unsucesssfully trying to open negotiations with the Burmese officinls, and as a last resouroe it was determined that Mr. Phayre shonld go to Samjok to see the Rajah, who seemed more obstructive that the others, and I immediately proposed to go with him, thinksing that both profit and pleasure might be had from the trip.

On the 27th December Plinyre and I started, making our first maroh to Morlung, about sixteen miles nearly south of the camp. He had written a letter to the Samjuk Raja to say that he proposed to visit him to talk over matters, and on the way we met the messenger with the answer, which was conveyed in ambiguous terms, the clever use of which the Burmese ratber pride themselves on, and was so very vague that we had almost turned baok, as we did not know how the man might roceive us, and we had no intention of allowing our dignity to suffer from want of the observation of proper etiquette. However, on arriving at Morlung, the chief man, who was a relation of the Raja, and who had come out to Thanan, about four miles, with all his armed following to meet us, received a confidential letter to say that the Raja wished to see us. At Morlung they trented us most hospitably, as they did ererywhere else in Burma. We had given them no notioe of our coming, or they would have built a speoial house for us; but they fitted up the travellers' houee with cloths as curtains, nud though it was a small village of merely twelve or fourteen houses. they gave us three maunds of rice, a henp of vegetables, salt, fowle, and half a galln of honey, and would have been grievously offended if we had offered payment. Hospitality is a trait of the Burmese. In every village there is a traveller's zest-house, whioh is free to all, aud a Burnan, they say, will sell his coat to entertain a friend. In every village also there is a monastery, where, I believe, the village cliildren are taught without fee by the priests, who are forbidden to touch money nud live on what is given to them as food by the villagers, and whioh they beg from day to day, doing this not because of poverty, but because of religious rule; some of them nlways being well off, as I believe it is an institution sthé every young inan, son of a person in good curcumstances, slall pass a year or two in $\mathrm{B} / \mathrm{l} / \mathrm{y}$ among the priesthood. They shave their hends, wear saffron-coloured robes, and are fot allowed to speak on public matters. Of common beggars I did not see anywhere we wh in Burma.

At Thanan, which we passed through on our way to Moring, we saw a coffin sr ${ }^{-1}{ }^{j}$ rited on stakes outside the village, and were told that it held the corpse of a very old r_{1}, who
had lately died, and that as his funeral ceremonies, on aocount of the honour d, had lately died, and that as his funeral ceremonies, on aocount of the honour d to his great nge, would be very long, his relations had obtained permission to postpong hem till after the harrest. The Burmese burn their dead.

On the 28 th we crosed the Angoching range to Toungban, where the rf aouse had
got ready for us with ourtains and an awning of leaves set up in fronf it been got ready for us with ourtains and an awning of lenves set up in frond it; This
village is on n little river, the Nat-than-yit, which being translated is "The crad We came across the fairies several fimes on our visit. At Morlung thero ifiry's son." which bod burst out of the hill-side after an earthguake, and we were nuth too nenr it with our shoes on for foar of offonding the resident fairy. I) fr not to got with him, and in ridiag through a unrrow pass mas asked by our guidoct fordis a nony we came to the other end, as they said the fairy would, if not thus prepitiat ou their village. And agnin at Samjok, where the house they ware bnio ing misfortune not been finished when we arrived, wo were askerl to wait befuretheng fir ma had piritual in lluenocs had been propitiated by music, as otherwise misfortud ring it till tho

On the 29th we marched to Samjok. They sent us a message to Toungban, begging us not to come till the sun was well up, as they had had so little time to prepare that they were not ready to receive us. So we started later than usual, and dawdled away some time in seeing the view nt Nat-than-yit, a village on the Kyendwen, and did not reaclh Samjok till noon. Eiven then our shed was not ready, but in nbout half an hour the band struck up and we entered and made ourselves comfortable. Our accommodation was a large shed about forty feet by twenty, with planks laid down as a floor, with a leaf awning about a huadred feet square in front, and slieds for the guard, servants, and kitchon. T'lhe roof of our house was, to be sure, somewhat like a sieve, and the walls rather like a bird-cage; but that was not from want of civil intention, but from want of time to do better; and considering that we were not wanted, and were looked upon more or less in the light of enemies, our treatment was very good-indeed so hospitable that we got more food than we knew what to do with, the Raja sending us a present of that sort every two hours during the day. A band had been sent to enliven us, cousisting of a chime of drums, a big drum, pipes, cy mbals, and bamboo castanets. The mau playing on the chime sat inside a tub-like enclosure of carved wood with his drums in a circle round him-a picture, by the way, of such a band of musicians was printed in the Iliustrated London Neus last year. A conjuror also was sent in the evening: one of his tricks was very cleverly done. He held a rupee on the tip of his fuger and asked that sorae one in the crowd should try to catoh it. Oue of our Kuki coolies who was near held out his hand, and the conjuror smacked the rupee into his palm. The Kuki closed his hand, and grasping the finger and money shouted "I have it," and was very muoh amused and amazed to see the man when he had suoceeded in pulling ont his finger hold it out with the rupee on it, and to find his hand empty when be opened it. Dancing and singing girls were provided for our entertainment at night. The dancing was posturing, more graceful and lively than that of Indian dancing-girls, and not indecent. The women piuned their dresses down the side, which was necessary, as a Burmese woman's pettiooat, though it reaches her heels, is only about four feet broad. The singing was really pretty, a ballad evidently, in two voices, the tune and time changing to suit the verse. It was, I believe, about the universal melody, one verse, whiol we got the translation of, being apparently a deseription of a puir of lovers, describing her as the silver tendrilled vine elinging to him, the golden tree. The Raja had wanted to got up a play for us, but oould not on account of the death of one and the sickness of another of the actors. The one who died had died of cholern, which had been very bad just before our visit. It appenrs to me, by the way, that new rice must have something to do with outbreaks of cholera. It invariably appears with the new rice in Sylhet, and has done so here also. The harvest here is just over, and rice is selling at three annas or less a maund. In Mandalay the price, I believe, is a rupee. Two of the Raja's ministers came to confer with Phayre, and to ask us to postpone our return till the day after next, as next day the Raja wished to pay us a visit.

The Raja, or, to give him his proper Burmnn title, the Tsärba, came at about 11 o'clock. He fired a couple of gune (clay bombs, I suppose, they were) at starting, and then his procession appeared widding aloug the sand and riverside. Two lictors, armed with sword, rod, and cord, cleared the way. Nine priests, calm and slow, with shaven heads and yellow robes, headed the procession. Then followed men with pennous of white or purple with broad edgings of gold. Then the T'sawba nad his younger brother oarried on tray-like platforms at the height of men's shoulders. Then the ministers and $p^{d n}$-bearers, \&c., on either side, followed by sepoys and musiciaus, five gold umbrellas, two fine elephants, and about a thousnad people, men, women and children, all walking except the Tsácba and his brother. They were both very handsonely ãressed. He had on a loose crimson velvet coat with hauging sleeves, with collar, cuffs aud border about a foot brond of gold, a haudsome silk nether garment, and a high white and gold copigal cap. The ministers were in white, with white fillets round their hends. The hanos were in a uniform of black jackets, red plaid continuation, and red fillets; the sedan2ry were nlso dressed unifornly, and all the people were neat and olean; and one could In noticing how difforent it was in this to what one sees in Indian processious. where tiffigg and bobtail element is always so very oonspicuous. It was altogether a most the picte procession, the irregularity of its approach along the river bauk helpiug to make more so, and in this, picturesqueuess it was very much superior to such promake one sees at home, whioh, to my mind, could not hold a onadle to it. But in this cessi. Speculiar idens, as I can see no beanty, nor onything but dreary absurdity, I ma. 0 -military tramp of trades-people with double-poled banners following a in a:
town ba platform had been built nad roofed in, under whioh the priests sat. In front, A reng was stretched and a carpot laid down with chairs for us and the Tsiuvba. a scarlet a nad ours were onllected round. Phayre had a loug talk with him and his All his peonpenot of which was that he asked us to wait for a day for his answer as to ministere, thrveyors might go into the Angonhing bills; every other point he esid he must whether the y. Seeing it from one side only perhaps, and as Phuyre told bim, he nust not refer to Mand territory sudfered, and that though we desired to do jubtice, ouce wo had be surprised y we would not draw back or reconsider it. as we had acted all through setlled the b the ueage of great nations, and the omissions lad been entirely on their in conformit? side. befure cive , so the harildar put them through the manual and platonu, the latter throngh somos sor in in improssion, espeoially "fire two rounds, front rauk kueeling." making, I faucy, rath

The Tsachu is a fine looking man. I noticed that he had peculiarly long untapered fingers, whioh made his hand seem wedge-shaped, which perhaps may be an indication of oharaoter explainable by chirosophists. He asked my age, and in return for the information told us that he was thirty-three, which I have no doubt was correot; but he looked forty.

In the afternoon we went to see the town. It was a oloudy day in December, so we lost the effect of bright light and full fresh folinge; but even as it was, it was very pretty. About the middle of the town, but more removed from the river, is the Tsarda's house, with a Chinese pagoda-like wooden spire and many gables; to the south and soth-west are the spur of a little hill with many pagodas ; and the monastery and all, interspersed with magnificent mangoes, ooconnuts, palms, and other trees, and the view of this, with the broad-winding river seen from the monastery hill, is quite cbarming. Ihe town is a single street on the river bank, and in front there is a strip of sand, with some sheds occupied by people connected with the boats whioh come to trade. Every place was beautifully clean. I wanted to find a memento of our visit, but there was nothing for sale escept pottery, red and unglazed, but very good. It seems to be a speciality of the place, and all the boats at the landing were loading with some of it, and it is used all over the district. It is the only produce of the place I believe. There were half-a-dozen large boats at the place, and there are always some there, either going up or coming down, and in August a number of boats pass down, whioh have been farther up the river to the Kamti country, trading for turpentine among other things. They go up, I suppose, in the spring and return with the flood at the end of the rains. I was in treaty for an ivory-handled sword, but at the last moment the owver refused to sell it, and I afterwards heard that this was by the Tsárba's order, who had ordered that nothing of the sort should be sold to us, though why I cannot say.

Samjok, which has been visited by only about half-n-dozen Europeans, has a great name in these parts ; but it is only a place of sisty houses, with no fortifications, and only about thirty sepoys. There are, I was told, about three hundred houses in the district governed by samjok, which does not extend across the river, but I think from what I snw that there may be six hundred. It is in a very defeosible position, provided the hill to the south of the place were fortified, as it has the broad, deep river to the east, a stream with rotten banks and soft silty bottom to the north, and a great marsh to the west. Whoever holds the lill has the town, but there is no way of getting to the bill from the north, so far as I know, except through the town.

The Inyendwen (pronounced Chindwin) river is a fine stream about 2,000 feet across, just above Samjok, and perhaps 200 feet broader opposite the town. It is said to be fifty feet deep in the chavnel, and the current here was about a mile an hour. The banks are steep, about twenty feet high, with forest growing to their edges, except where there is oultivation or habitation. It is navigable for large boats (sixty feet long and fint bottomed) for two months' journey farther up, the same journey by land occupying one month.*

All this part of Burma is covered with forest, and though I did not see any good timber on our route there must be some, as the Kyendwen River Steamer Company have purchased the monopoly of the timber trade of this river for Rs. 20,000 a year, aud the alabs of teak used for boat building were magnificent. About fifteen to twenty miles enst of the Kyendwen is noother large river, the Mu, which joins it lower down, along whioh there seems to be a good deal of oultivation, and where they say ponies are plentiful. Beyond the MuI saw one or twe mountain ranges

There used to be a good deal of trade between this part of Burma and Manipur, principally of buffaloes, ${ }^{\text {ronies, }}$ and laoquer oil. The so-called Manipuri pony was really a north Burma poy, and since the supply has been stopped the number and quality nvailable in Manipur has greatly fallen off aud the prices quadrupled For the last four years there has beeu no trade. A body of Shans surprised the Kungal thnan, killed pona Mnnipuries who were thero, and burnt it. Burma would give no reparation, so the gocfigs
were closed. were closal.

Lurivg the erening the Manipuri swherdor with us brought up a youth, whe kroj/id was the son of a Manipuri captivo by a SLan mother. He was a handsome yo whow, which at once distinguished bin from his Shan companions, for the Shans oans ${ }^{\text {a }}$, oalled gnod looking, but the curious thing about him was that he spoke Manipuri fluently sif think it is not generally the care that the father's language is lenrnt in the mothery pountry. Another handsnne fellon also cane to see us, and there was no mistaking d'well-out features and thick curled moustache and whiskers (oeither of which are Sban pon erties) for anything but llindoo. He was a man from Goruckpore. He asked me if I co t help him to get awny. On questioning lim I found he had been fourteen yenrs in rfimjok. He must have been quite n bory when he first came, as he did not look more $t / \%$ eight and twenty. Ho lad, be sail, lauded at the place, and on the first night of ofs stay all his belougings wero stolen. For eight daya, being unable to cook, he chewed of ace, and then gave in and turned Buman. He had since engnged in several occupationaldonde money and had it stoles. He at last determined to leare and invested his me?
but had beon turned back at the Manipur frontier, and three of his beasts were now dead. He had not married, as he said, "Where a man's children are his home is," and he wautend his funeral in his own country. I was sorry for him, but could not Lelp him. When the passes are open again, be will get away I hope.

On the 31st we made a long march of twenty-three miles to Morlung, and on the 1st of Jonuary, Phayre having goue on to Thamm to visit the Pagan Woon, I returued to the Kupgal camp.

There are four routes from Manipur to the Kabu valleg, but only two of those, the Inganrok-Kungal and the Imol-morel, could bo used by troops, water being scarce on the others. These two also are easier, the Imol being much the easiest of the four. The Kungal and Morch thanas, at the edge of the Kabu valley, are each five marches from Mnaipur. From Kuugal a level path leads by Thanan (12 niles, 6 houses) to Morlung (4 miles, 14 houses) at the foot of the Angoching range. Thence the path of Samjok orosses the range to Tloungban (18 miles, 18 houses). The range is about 1,500 feet above the valley. To the west the ascent is steep, to the east the path follows a gently sloping spur the whole way. From Toungban to Samjok (about 5 miles) the road is level. It crosses at one mile tho Nalthangit river at Trschdnugon (6 houses), and at four miles passes Nalthangit village (30 houses). Between this and Samjols there are two small streams, the path following the river bank. The road fron Morch thann joius the road at Morluag, the distance being about thirty-two miles. It passes near T'ammu (18 houses), Kourlong (8 houses), Maugsa (20 houses), Tap or old Samjok (10 houses), and Monoi (4 aouses). There is water on all these routes at moderate distances, and in the dry weather room for camping in the fields near the villages, or, where they are in bearing, in the juugle, which is thin tree forest with little undergrowth. At Nallhaugit there is a fine plaiu, half a mile square. The paths are all fit for laden animals except eleplants, but would be so for them with a little improvement. The Nalthangit river was a foot deep when we crossed it. There is no ford at Samjok, and not more thau a dozen boats, large and small. Rice was very cheap; but this was probably because there were no buyers, not on account of any very large supply. The whole eoudtry, except for small patches of cultivation, grass, or swamp, is covered with forest. This, when we saw it, was of small senttered trees with light undergrowth, prinoipally of a weed called yollffussie. Lieutenant Dun, of the Iutelligence Department, has made a careful report ou the passes between Manipur and Kabu, so I neerl not describe them. They are included in my map.

As a route for trade the Mauipur valley will, I thiuk, be happily exempt ; the road frorn Cachar is excellently made, but it crosses seven ranges, and the hills are tremendous, and those to the enst of the valley are nearly as high. The whole journey from Samjok to Caohar, at ordinary rates of travel, would take nbout twenty-two days. T'here is some small trade between Samjolk nud Southern Burma in China silk handkerchiefs and English salt, which undersells the native product. A few of the handserchiefs find their way to Manipur.

From the 1st to the 4th of January Mr. Ogle and I were engaged in computing and plotting our triangulation. Ou the 5th I marked out the boundary with Colonel Johnstone, and on the (ith Kungal camp broke up, our boundnyy work being done.

The demarcation of this part of the Mavipur boundary bad become necessary for several reasons, the principal being that while no definite line existed the Burmese were able to support some villages of Kukies, whom they had sent, with the intention of aunoying Manipur, to settlo on lands claimed by Manipur, whence they raided on and enslaved the Manipuri Nnga tributaries, and whence they could not be dislodged without the probability of bringing on a war, which, as it would have involved us also, it was the policy of the Government to prevent. The trouble that Manipur has had from these Kukies is a Nemesis on their conduct to them in past time, and would be also to Government should anything more serious come of it. The Kukies originally came from the south-west, and settled in Manipur by invitation of the Raja. Some yenrs ago the chiof, while on his way to Manipur to see Colonel MoCullool, who had sent for him, was treacherously murdered by e Manipuri. Government would not interfere, nud the Manipuri was not hanged, and the chief's son, now grown up, is a bitter enemy to the Man puries. They have tried to win him over by kindness and concossion, once ransoming his mother, who had been cnrried off by the Shans, at a heavy price, but he is not to be wou. Four years ngo he left Mavipur territory with all his tribe, and since then hns been giving a good denl of trouble.

Since the time when Manipur, much more powerful than now, made six ruids upon Burma and carried their arras to the Irawadi, and Burma in retaliation made seven raids on Manipur and slaughtered mon, women, children, and cattle indisorimiantely, the two peoples have beon bitter enemies, and the boundary that keeps them farthest apart is the best for the preserving of pence on the border. This, which is of so much importance to us as well as to them, tho boundary, as now laid down, does better than nuy other line that oould be olosen, as for nearly its whole length it follows the bases of the hills or streams in deep gorges in the hiills, which are parts of the oountry avoided by both people ; the Naga tributaries of Manipur keeping high on the ridgos aul spurs for their jonm oultivation, and the Burmese keeping away from the bills in the flat plain for their flooded fields of rice. The only hills used as part of the boundary is the Kisom ravge, north of the Nampagan river. This has always been known ns the boundary in that part, and serves very well, ns it is not habitable more than half way up, the penks being of the most extraordinary jaggednoss, and more like those in a young lady's faucy sketol thlu any I have ever seen. The entire boundary, except for
about a mile near Kungnl thana, is unmistakenbly marked by nature, and therefore requires neither the trouble nor the expense of marking or maintainiug.

From the 6th till my return I was engaged in triangulation and topography. The most sontherly point which I visited was Morch thann. This is used as a penal settloment for women who have committed murder. There were about a dozen murderesses in the plane, who waited on me with a present of fishes, and among them I am glad to say that there was only one moderately good looking. She had quarrelled with another girl and drowned her. Banishment is the extreme penalty which womeu suffer in Manipur. For offences less thau murder they are cried in the marketplace, and the most severe form of this punishment is awarded to women who go wrong with men out of their coste. They are shaved and hideously painted, and so led naked up and down the marketplace for three days, a drummer going before crying their crime. They also lose their coste. Men are not hauged in Mnnipur, except for murdering women. For other murders they are nominally banished to a place in the south of the valley, where they are made over to the natives, who kill them. For other serious offenoes men are banished to the islands in the Logtak lake, where they suffer torment from mosquitoes, whioh are so numerous, they say, that they can be oought by handfuls.

On the 21 st I returned to Manipur, and on the 25 th started for Caloutta, my worls in the feld being finished. During January 1 observed at four statious and plane-tabled about 600 square miles. The total amount surveyed by me has been 900 square miles. To the end of January Mr. Ogle had finished about 450 square miles. The total area of our survey therefore on that date was about 1,350 square miles, on the half-inch scale. Besides this, I was able to get in on the same seale nbout 500 square miles of reconnaissance. Mr. Ogle is now oontinuing, by your orders, the survey in Manipur, and will bring in, I lope, some valuable information.

Extract from a Narrative Report, dated 124 Junuary 1883, by J. B. N. Hennessey, Esp., M.A., Deputy Superintendent, lst grade, on Surveys in Dardistan and on the Kishanganga.
'There is a traot of country, horse-shoe in shape, belonging to Dardistan, with Chilhs about the centre nud the Indus bisecting it north and south. This traot is some 45 by 30 miles, and is edged by tbe territories of Kashmir, aloug which edge will be found Khanbari Darra, Báriben poss, Gor, Nangá Parbat, and the Indus-Kislanganga water-shed reaching to Kaghán. This horse-shoe could not be surveyed, because the ruler of Chilás refused admittance to surveyors, nor had the surrounding water-sheds beeu visited, so that the important passes lending across the Chilás horse-shoe were generally unknown. By visiting the watershed, which is the boundary of Koshmir, not only could the passes be fixed, but as the country must slope from the norihern and southern limiting ridges down to the Iudue, it was reckoned that a valuable sketoh of the horse-shoe itself may be obtained.

Ahmad ali was despatched to carry out the foregoing plan, with directions to begin at the west end of the south edge of the horse-sho ; but owing to the delay already mentioned, he did not leave Dehra until 26th July. Further delay ocourred at Srinagar, dne to his own illness aud the absence of the Malaraja's dewan, so that the sub-survegor did not reach his ground and commence work until 15th September; meanwhile the winter anow had begun, and, when standing on Gamukdori pass, his foreground for some 8 or 10 miles preseuted merely a confused mass of white hills, bare of vegetntion and otherwise very like one annther. His northern aspect at the next station he visited. Hule Nár pass, was hardly more favournble, and in brief his senson's work was hampered by fresh snow and by illness brought on by exposure.

Notwithstanding Ahmad Ali persevered working up the Kel Darra, across the Shochar pass into the Mir Malik Darra and up it to Rattu, and from thence down the Knmri Darra to the Kamri pass, where, with winter well on him, he ceased surreying ou 12 th November.

Although his feld season was unavoidably short, he sketched on the inch about so0 square miles of country, of which some 200 square miles to the north were never eketched before, and the remaining 600 miles bad been reconnoitered rather than surreyed, the latter area, on the extreme confnes of Knshmir, and part of it at the time utterly uninhabitod, had not been risited by Ahmad Ali's predecessor, who appenrs to have siketched from a distance of 10 or 12 miles, and in fact not to have erossed even the Kishanganga.

Abmad Ali, howerer, actunlly stood on the Kishanganga-Indus watershed, so that his survey of the 600 miles in question can be relied on ; it differs considerably, as many be surposed, from the original reconuaissance. He also fixed three important passes hitherto uuknown on this water-shed, riz.-

Gamukdnri	\ldots	\ldots	\ldots	13,400 fect
Hole Nár	\ldots	\ldots	\ldots	14,700
Bunar	\ldots	\ldots	\ldots	(Not visited)

besides othor passes, \&e., within Kashmir territory, nnd arquired experience by which it is likely he could aketch the horse-shoe in question on making a second attempt.

As regards the pasees and traffic, it appears that the Babusar pass, on the confines of Kaghán, is the one mostly used, especinlly for traffic between the Panjab p;d Dardistnu to Darel Tangir, \&c. There is a made road from the south up to Babusar pass, which is

The luni-solar declinational semi-diurnal tide, \mathbf{R}_{2} of \mathbb{K}, is less in propertion to the main tide than has previously been found, and is very near the theoretical value, being 0.131 against $0 \cdot 127$. The large proportion which the diurnal components bear to the main tide, which is the ohief peculiarity at Aden, is again evident from the annlysis of this year's observations.

The proportion of the solar diurual tide, $\mathrm{R}_{\text {, }}$ of S , is considerably larger than has been before obtained here, and very nearly equals the values obtained at Beypore and Peumben, being 7 per cent of the main tide.

The main diurnal tide, $R_{\text {, of }} \mathrm{K}$, is nearly the same in amplitude as in 1877-78, and but slightly less than that for 1879-80; it bears the amme immense proportion to the main lunar tide, being 85 per cent of it.

The solar diurnal tide (P) is about 24 per cent of the main tide, which is muoh about the same as has been found in the previous years, and is greater than in any other Indian port.

The proportions of the diurnal tides, O, J, and Q, to the main tide, agree well with those found in the previous years. O is a little less than before, but is still 44 per cent of the main tide.

The proportion between P and O is within the theoretical limits; that between J and Q is arain higher than the previous year, and much higher than theory gives. 0 to \mathbb{Z} is slightly less than the last year, and less than minimum proportion given by theory.

With regard to the long period tides. The proportions to the main tide (except in the case of the lunar monthly and lunar fortnightly) are nearly the same as last year. The lunar monthly is double the value obtained in the previous yoar, whilet the lunar fortnightly is one-third less.

The epoch of the solar annual agrees well with last year, but the solar semi-annual is a month later than last year.

VALUES OF THE TIDAL CONSTANTS AT ADEN, 1881-82.
The following are the amplitudes and epochs deduced from the 1881.82 observations at Aden:-

Short-Pcriod Tides

	s	M	0	K	\boldsymbol{P}	J	Q Q	\boldsymbol{L}	\boldsymbol{N}	λ	ν	μ	\boldsymbol{R}	T	38	2SM
A_{0}	6\%11	\cdots'.	...	\cdots	\cdots	\cdots	\cdots	'....'	\ldots	\cdots	\cdots	\cdots
n_{1}	0.003	0.080	$0 \cdot 627$	1'275	$0 \cdot 298$	0.081	v1s0	\cdots	\cdots	\ldots'	...	\cdots	\cdots	...
$\boldsymbol{\epsilon}_{1}$	191\%19	104648	313'88	11075	30315	130\% 25	938	\ldots	\ldots	\cdots	\cdots	\cdots	.'	...
$\mathbf{1 2}_{2}$	0701	1.686	0170				0-039	0400	00:28	$0 \% 06$	$0 \% 107$	\cdots	H024
ϵ_{3}	24:92	225.48	$224 \% 7$	\cdots	\cdots	19\%	2216	28.30	167×82	$178 \cdot 25$	\cdots	-•	\cdots	115\%5
n_{3}	\cdots	0015'	\ldots'	. $3 .$.	\cdots	\cdots"	\ldots'	\cdots	\cdots	\cdots	...
ϵ_{3}	\cdots	14830	\ldots	\ldots	\cdots	\cdots	\cdots	[..."'	-*	...	\cdots	..'
R.	11.1010	01007	\ldots	\cdots	\cdots	$0 \cdot 008$	\cdots
ϵ_{4}	27.76	S1AS	\cdots	\ldots'	$\cdots \cdots$	\cdots	\ldots	\cdots	\cdots	\cdots	'''	$16+16$	\cdots
$\mathbf{R H}_{6}$	0 man	Orout	\ldots	\cdots	..		
ϵ_{0}	20005, 4	1060'	\cdots	\cdots	'.'..	\cdots	\cdots	\cdots	\cdots
I_{3}	$0^{\circ} \mathrm{OHO}$	$0 \cdot 011$	\cdots	\cdots	\cdots	\cdots',	\cdots	\cdots	\cdots	\cdots
ϵ_{9}	920.01	20.43	\cdots	\cdots',-	\cdots	\cdots	\ldots	\cdots	..'	...

Long-Pcriod Tides.
Luvar monthly tide
... . $R=0.026 \quad \epsilon=324^{\circ .129}$
" forinightly ",
$\ldots \quad . \quad . \quad R=0.042 \quad \epsilon=1 \circ 90$
Lumi-solar
... $\quad . . R=0.016 \quad \epsilon=100^{\circ} .37$
Solar andual "
" semi-nunual "
.. $R=0.353 \quad \epsilon=1^{\circ} .62$
$\ldots R=0.093 \quad \epsilon=100^{\circ} .93$

The mean level of the sea (\mathbf{A}_{0}) is slightly higher than has been obtained in the precoding years.

The amplitudes of the main lunar and solar tides are nlmost the same as the previous year's, and therefore the proportion between them is identical with what had beon found before. This is rather lees than the theoretical value, being 0.444 against 0.476 .

With regard to the lunar elliptic semi-diurnal tides, the smaller (L) has a proportion to the main tide slightly less than theory gives, 020 against $\cdot 027$; and this value io just tho mean between the values of the two first years, but is very much less thon that of the preceding year.

The proportion between the larger oomponent (N) and the main tide is rather less than has yet been found, but is still one-third greater than is given by theory.

The proportion of the eveotional semi-diurnal tide (λ) to the main tide is higher than has yot been found at Aden, being more than three times grenter than the theoretical value, whilst the proportion of the other eveotional tide (ν) agrees exactly with theory.

The variational tide (μ) is 5 per cent of the main tide, which agrees with the values from former years, but is double the theoretioal value.

The luni-solar declinatiounal semi-diurual tide (R_{2} of K) is rather less in proportion to the main tide than has yet been found here, and is slightly in defect of the theoretioal value.

The proportion of the luni-solar oompound semi-diurnal tide to the main tide is the same as was found in the two previous years.

The high proportion of the diurnal tides to the main tide at Aden is again shown this year. The chief of these, the luni-solar declinational tide (R_{1} of K), is 80 per oent of the main tide. The solar doolinational diurnal tide (P) is 25 per cent, and the lunar declinational diurnal (O) 40 per cent of the main tide. These proportions are the greatest found at any Indian port, Beypore having the nearest approach to such high values.

The proportions between P and O, J and Q, and O and K, are very much the same as previously obtained. The first two are greater than theory gives, and the third less.

The lunar and solar over-tides agree with the values of previous years, and are all small.

With regard to the long-period tides, their amplitudes and epochs agree fairly well with the results of preceding years. The solnr-annual and semi-annual are slightly less than previously obtained, but call for no special comment.

VALUES OF THE TIDAL CONSTANTS, KURRACHEE, 1879-80.

The following are the amplitudes and epochs deduced from the 1879-80 observations at Kurrachee :-

Short-Period Tides.

The value of mean sea-level (A_{9}) is the bighest yet obtained, except in 1878-79, which, however, having been specially trented to correct for alterations of zero, cannot be considered to have quite thie same weight.

The amplitudes and epochs of the main solar and lunar tides agree well with the values of previous years. The proportion between thera is likewise nearly the same as before, but is considerably less than the theoretical value, boing 0.379 against 0.476 .

With regard to the lunar elliptic semi-diurnal tides, the smaller (L) has a proportional value double what was found in the preceding year, and agreeing very nearly with the theoretionl proportion, which on the whole is nearly approached at Kur'achee.

The larger component has a proportional value not far from the mean value of former years, and rather greater than is given by theory.

With referonce to the lunar perturbational tides, the smaller evectional tide (λ) has nearly exactly the theoretical proportion to the main tide: previous years have generally given a larger value.

The larger component (ν) is also almost identioal with the theoretical value, being smaller than has been generally found here.

The varintional tide (μ) has a proportional value of 030 ; theory gives 022. The general mean of the previous years is 026 .

The luni-solar deolinatioual semi-diurnal tide (R_{3} of \mathbb{K}) agrees very well with the genernl value at Kurrachee, and has nearly the theoretical proportion to the main tide.

The diurnal tides call for no special mention; they agree very well with the values obtained in previous years.

The same may be said of the over-tides of S and M.
With regard to the long-period tides, the lunar tides call for no special mention; they ngreo well with the general mean value of former years.

The solar annual is, however, abnormally small, being hardly 2 per cent of the main tido. Its epoch is the 18th June, a month earlier than in 1877-78. The epooks of this tide at Kurrachee bave been variable.

The semi-annual tide has a proportional value about equal to the mean of former years; its epochs, which occur on the 18th June and December, are also unsettled at this port.

VALUES OF THE TIDAL CONSTANTS, KURRACHEE, 1880-81.
The following are the amplitudes and epochs deduced from the 1880-81 observations at Kurrachee:-

Short-Period Tides.

s	a	-	\%	${ }^{P}$	J	-	\pm	1	1	$\nu \mid$	${ }^{\mu}$	n	т		s
${ }_{4}{ }^{1}$..."	-	\cdots		
		0	${ }^{1224}$	Oze		mese 0.108				\cdots	\cdots	--			
$\epsilon_{1}{ }_{3}{ }^{\text {wrsa }}$		320:90	$1: 779$	з18:1	1887	93143			\cdots	…	..-	...		
										${ }^{6}$	(6) 0005	com			0.0
$\epsilon_{2}{ }^{\text {gasam }}$		-				-	wst	2735	13074	, 114	${ }^{28} 835$	wses	4522		-1 19
		- -									\cdots				
		...	\cdots	\cdots	\cdots	\cdots		\cdots	\cdots		\cdots			
			\cdots					\cdots	\cdots	\cdots	\cdots	.			${ }^{\text {cose }}$
			\cdots	\cdots	\cdots			\cdots	\cdots	\cdots	\cdots				ss
			\cdots	-	.-7		\cdots								
		\cdots	\cdots	\cdots	\cdots		\cdots	\cdots	\cdots	\cdots				\cdots
		-	\cdots	.	.-...	-'	--		-						
	ser 2π	\cdots		\cdots	-	.'-		.- ..							

Lony-Period Midrs.

Lunar monthly " fortnightly				$R=0.038$ $R=0.021$	$\epsilon=131^{\circ} \cdot 23$
Luni-golar ,"	"	\ldots	...	$R=0.018$	$\varepsilon=304^{\circ} 50$
Solaramanual	.,		..	$R=0.102$	$\epsilon=101^{\circ} 51$
semi-annual	"	\ldots		$R=0.139$	$\epsilon=191^{\circ} 73$

The value of mean sea-level $\left(A_{n}\right)$ is slightly less than last year, and ngrees very well with the geueral mean of previous years.

The main solnr and lunar tides are slightly higher than before found, but they agree well both in arnplitudes and epoche with previous values.

The proportion of the main solar to the main lunar tide is 0.382 , which is quite accordant with former values, and is considerably less than the value given by theory, 0.476 .

The smaller lunar elliptic semi-diurnal tide (L) has a proportion to the main tide nearly double that of last year, and muoh larger than the usual proportion at Kurrachee, which approaohes nearly to the theoretional value.

The proportion of the larger component (N) to the main tide is nearly the same as last year, and agrees well with the mean of preceding years, but is rather greater than the theoretical proportion.

With regard to the evectional tides, the smaller (λ) has the same proportion to the main tide as was found last year, and which is noerly the theoretical value.

The larger (ν) is nearly double what was found last year, when ite proportional value nearly ngreed with what theory assigus.

The variation tide (μ) has only half the proportional value whioh was obtained last year, and is considerably under the theoretical value.

The eolar elliptio semi-diurnal tides are colculated this year. The smaller oue (R) has a proportionnl value four times as great as theory assigns. This is about the mean value of this tide at Kurrachee.

The larger component (T) is about 25 per cent grenter than the theoretical proportional value.

T'he luni-solar declinational semi-diurnal tide is larger than has ever yet been found at this port. Its proportional value is 0.166 : theory gives 0.127.

With regard to the diurual tides, the largest (R, of K) is rather smaller this year than in general, R, of S is larger, amounting to 5 per cent of the main lunar tide.

The lunar diurnal tide on the contrary has a smaller proportion than usual. The other diurnal tides have this year smaller proportional values than the mean of former years.

The over-tides of S and M are muoh the same as in previous yenrs. The over-tide; \mathbf{R}_{6} of M, at Kurrachee is double the quarter diurnal tide, a peculiarity which in the Indian tides only occurs at one other place, Elephant Point.

With regard to the long-period tides. The lunar tides are rather smaller than the mean of previous years. The solar aunual tide this year is 4 per cent of the main luun tide; last yenr it was hardly 2 per cent. The value of this tide has fluctunted greatly at Kurrachee, as also has the epoch, which this year is about 15 days later than last year, when the maximum occurred about the middle of June.

The solnr semi-annual tide is slightly less than last year, and agrees well with the general mean value. Its times of maximum ocour about ton days later this year than the last, $i . e$. about the eud of June and December.

VALUES OF THE TIDAL CONSTANTS, BOMBAY, 1880.

The following are the amplitudes and opools deduced from the 1880 observations at Dombay :-

Short-Period Tieles.

Lunar monthly	tido	$\boldsymbol{R}=0.041$	$\varepsilon=86^{\circ} \cdot 07$
, fortnightly	"	\ldots	..'	$R=0.059$	$\epsilon=337^{\circ} \cdot 84$
Ludi-solar ,	"	$R=0.042$	$\epsilon=186^{\circ} 09$
Solar annual	"	$R=0.173$	$\epsilon=312^{\circ} \cdot 56$
, semi-annual	"	$R=0.071$	$\varepsilon=162^{\circ} 31$

The results of the analysis of this year's observations differ but slightly from those whioh have been obtained from the reduotions of former years, and do not call for any lengthened comment.

The value of \mathbf{A}_{0}, mean level of the sea, is almost identical with that obtained last year, 80.187 instead of 80.184 , above Town Hall datum ; the mean value, as far as yet obtained, being 80.212 feet.

The amplitude of the main lunar tide (R_{8} of S) is the largest yet obtained, being $4 \cdot 05$, against 3.98 in 1879 and 3.89 in 1878; the main solar tide being nearly exactly the mean of the two preceding years.

The proportion between the two main tides is slightly smaller than has yet been obtained, being $0 \cdot 402$; the theoretical value being 0.476 .

The epochs in both cases agree well with previous years.
The amaller component (L) of the lunar elliptic tide has a proportion to the main tide muol grenter than has yet been obtained, being 039, the previous year having been only -014 . The theoretical value is 027 . For the larger component (N) the proportion ngrees very well with the values in former years, and is about 25 por cent greater than the theoretical value.

The perturbation tides, with the exception of ν, agree fairly in their proportions to the main tide with the values of former years. The proportion of ν approaches nearest to that obtained in 1876-77, but is not more than one-third of the value of the last two years.

The luni-solar oompound deolinational tide (R_{2} of K) and the luni-solar compound semidiurual (2 SM) are fairly accordant with previous values.

The values of the diurnal tides agree well with what has been found in former years, the principal one (R , of K) being 35 per cent of the main tide, which is slightly less than the values previously obtained.

The proportion of the solar and lunar declinational tides, \mathbf{P} and O , is $\cdot 59$ to $1 \cdot 0$, which is about the value already obtained here; theory giving from '391:1 to 574 : 1 .

The proportion between the two lunar elliptio tides, J and Q, is 1 to $1 \% 25$, which agrees with the value obtained in 1876 ; theory giving about 1 to 2.4 .

The proportions of the over-tides of S and M are nearly identically the snme as found in formor years, as is also the proportion of the quarter diurnal luni-solar tide (MS) to the combined lunar and solar somi-diurnal tides, viz. $\cdot 022$.

The proportion between the lunar ter-diurnal and the lunar semi-diurnal tide is 017 , which is alnoest precisely the value of former years.

With regard to the long-period tides, the reduction of this year's observations gives in several eases values diverging, both in amplitude and epoch, from those already obtained.

The solar annual has a value of 0.173 , against one in 1879 of 0.137 and in 1878 of 0.254 . Its epoch agrees within about 15 days with that of 1879 , and more nearly with that of 1876, but differs entirely from that of 1878 . From the resulte of 1876 , 1879 , and 1880 , the date of maximum effect seems to be early in February, whilst 1878 gives the middle of August.

With reference to tho solar somi-annual tide, the amplitude is nenrly the same as in 1878, and not muoh more than half the value obtaiued in 1879. The epoch differs cousiderably from that found in previous yenrs. The maxima would appear to be about the 9th June and 9th December, agreeing most elosely with the 1876 valuos.

The lunar fortaightly and lunar monthly tides agree fairly in amplitude with the two previous years.

The luni-solar fortnightly tide is noarly three times as large as last jear, but is nearly a mean between the values of 1876 aud 1878 .

VALUES OF THE TIDAL CONSTANTS, BOMBAY, 1881.

The following are the amplitudes and epochs deduced from the 1881 observations at Bombay:-

Short-Period Tides.

Long-Period Tides.

Lunar monthly	tide	\ldots		$R=0.048$	$=55^{5 \cdot 55}$
" fortuightly		...		$R=0.028$	$\epsilon=226^{\circ} \cdot 38$
Luni-solar	"	$R=0.019$	$\epsilon=335^{\circ} \cdot 66$
Solar annual				$R=0.188$	$=316^{\circ} .59$
semi-annual	"	\ldots		$R=0.201$	$\epsilon=232^{\circ} \cdot 34$

Analysing these observations, they will be found to give results differing but slightly from those obtained by the reductions of the observation in previous years.
A_{o}, the menn level of the sen, is found by this year's observatious to be 80.248 above the 'Town Hall datum, which is ' 06 feet higher than last year's value, and about the same amount higher than the mean of the four preceding years.

The amplitude of the main lunar tide (K_{4} of \mathbf{M}) is about $\frac{1}{2}$.inch greater than the result of last year, and is the largest yet obtained ; while the amplitude of the main solar tide is slightly less than last year, and agrees very well with the mean of the previous years.

The main solar tide is only 0.395 of the main lunar, whioh is the smallest proportion yet found at Bombny, where, however, the value has always been less than the theoretical one, 0.476 .

The proportion of the smaller component of the lunar elliptic semi-diurnal tide (L) to the main lunar tide is $\cdot 023$, which is slightly less than the theoretical one, 027 , but agrees with it much more closely than has been found in any previous yenr save 1876.

The larger lunar elliptic semi-diurnal (N) agrees very well with the resulte of former years, being about 24 per cent of the main lunar tide.

The evection and variation tides λ, ν, and μ bear about the same proportion to the main tides as had been found in previous years, λ being rather emaller, whilst the proportion of ν is about menn value.

With regard to the solar elliptio tides the smaller (K) is rather less than the value previously obtained, and its proportion to the main lunar tide is slightly nearer the theoretical value, but still twice as great.

The larger tide (T) is three times greater than its previous value, and its proportion to the main tide of M is more than twice as great as the value given by thenry.

The luvi-solar declinational semi-diurmal tide (R_{a} of K) has a value elightly less than has been yet obtained, and its proportiou to the maiu tide is less than theory assigus, 100 against $\cdot 127$; in this agreaing with the last two garrs, the proportion in 1877 and 1878 being greater than the theoretical value.

The luni-solar compound semi-diurual tide (2SM) agrees well with previous yenrs.
The proportions of the over-tides of S and M to the muin luan tide agree almost exactly with the previous values.

The proportion of the ter-diurnal lunar tide to its main tide slightly less than hes been found in the presious years.

The whole of the diurnal tides agree well in value with the values obtained last year, and their proportion to the main luar tide is very nearly a mean of the values previously frund.

The proportion of the solar deolinational tide (I) to the lunar declinational (O) is about 1: $1 \cdot 57$, which is greater than in any previous year. The theoretical proportion is from 1: 1.74 to 1:256.

The proportion between the two lunar elliptio tides J and Q is $11 \cdot 07$, being much the largest yet obtained at Bombay. Thenry gives the proportion about 1: : $2 \cdot 4$.

The quarter diumal luni-solar tide (MS) bears precisely the same proportion to the combined lunar and soler semi-diurnal tides as it did in four of the five previous years, viz. 022 ; the jear 1879 giving $\cdot 024$.

With regard to the long-period tides, the solar annual has an amplitude a little greater than last year, and an epoch about four days later, agreeing nearly exactly with the value obtained in 1876.

Looking at the five years' values which we have obtained, it would seem that the value, both for amplitude and epoch, obtained in 1878 was abnormal; the other four yeara are consistent in fixing the dates of the maxima as being in the first half of February. The 1878 volues gave the date as the 17 th July, and the amplitude as 25 per cent greater than even this year's value, whioh is the highest of the other four years.

The solar semi-annual gives values, both of amplitude and epoch, divergent from those already obtaived. Its amplitude, $0 \cdot 201$ feet, is three times as grent as last year's value, $\cdot 071$, and one-fifth greater than the largest previous value ($\cdot 163$ in 1877). Its epoch is nearly the same as in 1879 , but differs from all other yoars.

The lunar fortnighly agrees fairiy in the amplitude with the values of the last two years, but the amplitudes of the other two lunar tides differ greatly from previous values.

VALUES OF THE TIDAL CONSTANTS, KARWAR, 1880-81.
The following are the amplitudes and epooks deduced from the 1980-81 observations at Karwar:-

Shnit-Period Tides.

	s	M	0	\boldsymbol{F}	\boldsymbol{T}	J	Q	L	N	λ	ν	μ	π	T	π / S	2SM
$\boldsymbol{\Lambda}_{0}$	5:5\%	.	\cdots	\ldots	\cdots	\ldots	...]	\ldots	.'	\cdots	\ldots	\ldots	\ldots	\cdots	'*
\mathbf{R}_{1}	$0 \cdot 055$	0.059	$0 \cdot 622$	1'091	0.2s2	0.090	$0 \cdot 134$	\ldots	\cdots	...	-•'	. ${ }^{\prime}$
ϵ_{1}	150.10	189.55	329\%21	12505	312:00	14809	334.49	\ldots	\ldots.		\ldots	...	\cdots	\cdots
R_{2}	$0 \cdot 621$	$1 \cdot 739$...	0168	.			00078	0.412	0093	$0 \cdot 120$	$0 \cdot 010$	\cdots		...	0 OH
ϵ_{2}	38908	208.41	\ldots	$300 \cdot 80$	\ldots	\ldots	1:3238	290:39	21661	258.49	235:33	\cdots	1654
\mathbf{H}_{3}	0018	\cdots	\ldots	...			\cdots	\cdots	\cdots	..		\cdots	\cdots	...	\ldots
$\boldsymbol{\epsilon}_{3}$	27209	\ldots	\cdots	\ldots	\ldots	\ldots	\ldots	\cdots	
\mathbf{R}_{4}	$0 \cdot 010$	0.054	\cdots	\cdots	\cdots	\cdots'.	...	\cdots	\cdots		0.021	...
ϵ_{4}	0637	7.21	\ldots	\ldots	...	\ldots	\cdots	\ldots	\ldots	\cdots		58.00	\ldots
R_{0}	$0 \cdot 001$	$0 \cdot 013$: $1 .$.	\cdots	.	\ldots			\ldots	\cdots			\cdots"	\cdots
6	82'2t	27070'		'. \cdot.		\cdots	\ldots		\cdots	\cdots		\cdots
$\mathbf{R}_{\mathbf{S}}$	0000	0004			\cdots	'....	\ldots	\cdots	\cdots	*.	...
$\boldsymbol{\epsilon}_{\mathrm{H}}$	29065	$0 \cdot 29$	\cdots"		\cdots		...	\ldots

Long-Period Tides.

Lunar montbly	tide	...	\ldots	$R=0.048$		$=99^{\circ} \cdot 91$
" fortnightly	"	...		$R=0.036$		$=322^{\circ} \cdot 54$
Luni-solar "	"	\ldots	...	$R=0.021$		$=224^{\circ} 02$
Solar annual	"	\ldots	...	$R=0.191$		$=302^{\circ} \cdot 72$
" semi-annual	"	$R=0 \cdot 128$		$=191^{\circ} 21$

The value of (A_{0}), mean level of the sen, is rery sliglatly higher than in the preceding year, being 5.564 against 5.541 for $1879-\mathrm{so}$. The mean of the three gears' observation gives 5.585.

The value of the main lunar tide (R_{2} of M) is slightly greater in amplitude than in either of the foregoing years. The epoch agrees well with what was previously found.

The value of the main solar tide (R_{a} of S) is nearly the same, both in amplitude and epoch, as in the two preceding jears.

The proportion between the two main tidos, which was 0.368 and 0.375 in the two last years, is $0 \cdot 354$ this year-all smaller than the theoretical value, though agreeing inter se.

The proportions of the lunar elliptic semi-diurnal tides to the main tide are slightly greater for L than in the previous years, and oonsiderably above the theoretical value. For N the proportion of the former years is elightly diminished, but it also is greater than theory gives.

The evectional semi-diurnal tide (λ) differs both in amplitude and epooh from either of the preceding yeare, and is greater than theory gives. It is $\cdot 018$ of the main tide $;$ the theorotionl value being -007.

The proportion of the other evectional tide (ν) to the main tide is nearly the same as last year, and about twice the theoretical value.

The variation semi-diurnal tide (μ) has nearly the theoretioal value, it being •026 of the main tide; theory giving 022 .

The semi-diurnal component of the luni-solar declinational tide (R_{2} of K) has a smaller value than yet found at this port, and its proportion to the main tide is considerably less than has been found in the previous yenrs, when it had nearly the theoretical value.

The proportion of the luni-solar oompound semi-diurnal tide to the main tide is the same as last year, and is the smallest that has been yet obtained at any Indian port; the nest smallest being at Beypore and Vizagapatam.

The ohiof diurnal tide (R_{1} of \mathbb{K}) bears a proportion to the main tide of 588 to 1 , whioh is about a mean between Bombay, ' 369 to 1 , and Beypore, 794 to 1 , and is muoh the same as is found at Kurrachee.

The solar diurnal tide (R, of S) is about $\frac{1}{7}$ th of its principal oomponent, being about the same proportion as obtains at Bombay and Kurraohee.

The proportion of P to O is again greater than the previous years, but all these values are within the theoretical limits.

The proportion of J to $Q(0.672)$ is again greater than in 1879-80 (0.584) and 1878-79, when it was 0.413 ; these values are all in excess of the maximum theoretical limit, 0.417 .

The proportion of 0 to K is nearly the same (0.506) as was found in the two previous years $(0.518$ and 0.517$)$, but all much less than the minimum proportion given by theory (0.657).

The proportions of the over-tides of S and M are all small, and agree fairly well with those of the previous years, except the solar quarter-diurnal tide (R_{4} of M), which is twice as great.

The Helmholtz tide (MS) is 000 of the main lunar tide, the same value as was obtained in 1878-79.

With regard to the long-period tides, the lunar monthly and luni-solar fortnightly agree with previous values; but the lunar fortnightly bears only about half the proportion to the main tide that it has borne in previous years.

The solar nnnual and semi-annual again show a oonsiderable inorease, these values being three times as large as those found for 1878.79.

The epoche of both the solar annual and semi-annual agree well with last year's dates, being about four days earlier.

VALUES OF THE TIDAL CONSTANTS, KARWAR, 1881-82.
The following are the amplitudes and epoche deduced from the 1881-82 observations at Karwar:-

Short-Period Tides.

The value of \mathbf{A}_{0}, the mean level of the sea, above the zero of the gauge is slightity lower than in previous years; but all the values are very accordant, the extreme difference having been 0.135 foot. This year's value is $\cdot 05$ foot below the mean value.

The main solar tide is very slightly less in amplitude than in the previous years, and the main lunar tide is a little greater; the epoohs of both tides are nearly identical with last year's values.

The proportion which the main solar tide bears to the main lunar tide is rather less than has been found in the three previous years, and is oonsiderably below the theoretical value, being 0.348 against 0.476 .

With regard to the two lunar elliptio tides, the smaller (L) is only about half the value obtained last year, and is slightly less in its proportion to the main tide than its theoretical value.

The larger component (N) is slightly less than in former years, but fairly concordant ; it is rather greater in proportion to the main tide than theory allows.

The smaller evectional semi-diurnal tide (λ) has a value which is nearly the mean of those obtained at this port. This tide is about half as large again here as theory gives it, agreeing exactly with Beypore, whilst at Bombay the mean value of the proportion is exactly the theoretical one.

The larger evectional tide ($\boldsymbol{\nu}$) is much smaller this year than has been before found, being only about half the value of the previous year; its proportion to the main tide approaches very nearly to the theoretioal one, being "033 against 037.

The variational tide (μ) is rather larger than last year, but its proportion is not much greater than theory gives, being 029 against 022 .

This being the fourth year of the observations, a second value of the solar elliptioal tides (R and 'T) has been obtained (two jears' observations being neeessary for each value).

The emaller component (\mathbb{R}) is slightly larger than before; the mean of the two gives exactly the theoretical proportion.

The larger component (T) is considerably greater than its former value, and its proportion to the main tide is 50 per cent greater than theory gives, whilst the last value at this port esactly agreed with the theoretical value.

The semi-diurnal component of the luni-solar declinational tide ($\mathrm{R}, \mathrm{of} \mathrm{K}$; bas nearly the same proportional value as last year, which is somewhat less than the theoretical value.

With regard to the diurnal tides, they all agree well with the values obtained in the rrevious years; they are on the whole a little smaller in proportion to the main tide with the exception of the diurnal lunar tide, whioh is about double its former value.

The proportions of \mathbf{P} to O and J to \mathbf{Q} both exceed the theoretical limit, while that of O to K is less than it.

The orer tides of S and M agree very well with the values of previous years, aud call for no special mention.

With regard to the long-period tides, the lunar tides have all muoh the same proportional values as before found.

The solar annual tide is rather less than was fonnd last year, but is about the mean of the values of the four years.

The semi-annual has a proportional value, the same as in 1877-78, but less than the two previous years. Its epoch is more than half a month later than last year.

The time of maximum of the solar annual is exactly the same as last jear, viz. 23rd January.

VALUES OF THE TIDAL CONSTANTS, BEYPORE, 1880.81.
The following are the amplitudes and epochs deduced from the $1880-81$ observations at Beypore:-

Short-Period Tides.

	$\$$	\boldsymbol{M}	0	\boldsymbol{F}	\boldsymbol{P}	J	Q	\boldsymbol{L}	\boldsymbol{N}	λ	ν	μ	$\boldsymbol{\pi}$	T	MS	25.5
\boldsymbol{A}_{0}	5-412	\ldots	'....	*...'	'"'	...	\cdots	\ldots
R_{1}	0.009	0.056	0.329	0.078	$0 \cdot 107$	0.063	0'091	*....	-...'	\cdots	..'	\cdots	...
ϵ_{1}	187'20	142*09	330-81	$135 \cdot 27$	327 20	101.29	\$10.10'	'.....	\ldots	\cdots	\ldots
\mathbf{R}_{2}	0'309	$0 \cdot 903$	0'085	.	\ldots	0.021	$0 \cdot 191$	0.018	0.051	0.008	...	\ldots	\cdots	0 0 ${ }^{\text {a }}$ - 4
ϵ_{2}	2178	890'87	965'34	\ldots	\ldots'	1.4621	300.38	$100 \cdot 65$	951.98	199.09	..	-	...	2036
$\mathbf{R}_{\mathbf{g}}$	\ldots	$0 \cdot 011$	\ldots	\ldots	...	\ldots'	\ldots	'1.	...
$\boldsymbol{\epsilon}_{3}$	\cdots	$100 \cdot 77$	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	'"	...
\mathbf{R}_{4}	0.004	0×018	\cdots	-•...	\cdots	\cdots	0.008	...
$\boldsymbol{E}_{\boldsymbol{b}}$	$132 \cdot 80$	4914	\ldots	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	08*30	...
R_{0}	0.008	$0 \cdot 003$	\cdots	\ldots	\ldots		\ldots	\cdots	\cdots	\cdots	' ${ }^{\prime}$	-.
ϵ_{6}	$205 \cdot 70$	$178 \cdot 10$.	\cdots	\ldots	\ldots	\cdots		\ldots	\cdots	'.	.'.	'*	\cdots
H_{g}	0.001	$0 \cdot 003$	\cdots'	.	\cdots	\ldots	. ${ }^{\text {. }}$.	\ldots	**	\cdots	\cdots
e^{3}	45.00	131.32	\cdots	$\cdots \cdots$	\ldots	\ldots	\ldots	...	\cdots	\cdots	\cdots

Long-Period Tides.

Lunar monthly	tide	\ldots	\ldots	$R=0.108$	$\epsilon=349^{\circ} \cdot 81$
fortnightly	$"$	\ldots	\ldots	$R=0.021$	$\epsilon=26^{\circ} \cdot 05$
Luni-solar ""	$"$	\ldots	\ldots	$R=0.017$	$\epsilon=276^{\circ} \cdot 62$
Solar annual	$"$	\ldots	\ldots	$R=0.328$	$\epsilon=310^{\circ} \cdot 74$
", semi-annual	$"$	\ldots	\ldots	$R=0.180$	$\epsilon=208^{\circ} \cdot 39$

The mean level of the sea (\mathbf{A}_{0}) from the 1880.81 observations was found to be 5412 feet above the zero of the gauge, being 020 higher than that obtained last year and - 027 than that of the year before.

The main lunar tide (R_{q} of M) is almost identioal in amplitude and epoch with the values of the two preoeding years.

The amplitude of the main solartide (R_{4} of S) is almost the same as obtained last $y \in a r$, and ite epoch differs but very alightly.

The proportion between the two main tides (R_{q} of M and R_{2} of S), $\cdot 342$, is still less than was found in the two preceding years, and is greatly less than the theoretion value, which is -476. With the exception of the places in the Gulf of Cutch, this is the smallest proportion yet obtained in India ; the value at Karwar being the nearest to it.

The smaller lunar elliptic semi-diurnal tide (L) has not quite half the value found last fear, but agrees very fairly with the value of 1878.79 and the proportion given by theory.

The proportion of the larger component (N) to the main lunar tide is very nearly the same as was found in the two previous years, and is slightly greater than the theoretical proportion.

With regard to the two evectional tides (λ and ν), λ is nearly the same value as last year, ν is slightly greater, and both considerably exceed the theoretical proportion.

The variational tide (μ) is only about one-third as large as in the previous years, and its proportion to the main lunar tide is much less than what is given by theory.

The luni-solar deolinational semi-diuranal tide (R_{a} of \mathbf{K}) has a value almost identical with that obtained last year ; its proportion is considorably less than the theoretional one.

With regard to the diurnal tides, the chief one (12 , of \mathbb{K}) is a little less than the values of the previous years, but is still greater than hae been found at ang port exoept Aden.

The proportions of the other diurnal tides to the main lunar tide do not difer much from the value obtained in the provious years, except $R_{\text {, }}$ of M, which is 6 por cent of the main tide, a proportion which has only been slightly exceeded one year at Δ den.

The luni-solar compound somi-diurnal tide (2 SM) agrees well with the values of previous years.

The over-tides of S and M present no remarkable features, except the rather larger proportion of the lunar quarter-diurnal to the main tide, a poculiarity noticed in the previous years.

The proportion between the solar and lunar diurnal declinational tides (P and O) is -599, which is larger than has yet been obtained, and slightly exceeds the maximum limit given by theory.

The proportion between J and Q is much larger than in previous yeare, and oonsiderably greater than the theoretical proportion.

The proportion between 0 aud K is slightly less than in the two previous years, and is less than tho theoretioal mivimum proportion.

With reference to the long-period sides, the lunar monthly equals 12 per oent of the main tide, which is a larger value than before obtained at any port in India.

The lunar fortnightly is ouly about one. ifth of the values obtnined in the previous years, which, however, were two or three times as great as had been found at other Indian ports.

The luni-solar fortnightly is also much smaller than the previous years'. The values of both these lunar tides, as deduced from this year's observations, agree much better with the general values of the Indian ports than those previously obtained.

The amplitude of the solar annual tide is about a mean between the two previous values, and its epoch agrees very woll with previous years, the maximum oceurring same day as in 18:8-79.

The solar semi-annual is rather less than last year, being 20 per oent of the main tide, instead of 28 per cont: ite amplitude is still, however, much greater than at any other port on the west const. Its epuch is about nine days earlier than in 1878-79 and a fortnight later than in 1879.80.

VALOES OF THE TIDAL CONSTANTS, PAUMBEN, 1880-81.
The following are the amplitudes and epochs deduced from the 1880.81 observations at Paumben:-

Short-Period Tides.

Long-Period Tides.

Lunar monthly	tido	\ldots	\ldots	$R=0.034$	$\epsilon=22^{\circ} .84$
fortaightly	$"$	\ldots	\ldots	$R=0.052$	$\epsilon=335^{\circ} .25$
Luni-solar "	$"$	\ldots	\ldots	$R=0.027$	$\epsilon=158^{\circ} .99$
Solar nnnual	$"$	\ldots	\ldots	$R=0.164$	$\epsilon=286^{\circ} .80$
$"$ semi-nnnual	$"$	\ldots	\ldots	$R=0.184$	$\epsilon=116^{\circ} .70$

The mean level of the sea (A_{n}) was found to be 2.759 nbove the zero of the gauge, being slightly higher than the values found in the two preceding years, which were $2 \cdot 666$ nad $2 \cdot 707$ respectively.

The main lunar tide (R_{9} of M) is slightly larger than the values for preoeding yenrs; its epnch is the same.

The min solar side (R_{2} of S) ngrees extremely woll both in awplitude and epooh with former values.

Resulting from this we find the proportion between the two main tides is much the snme ne in previnus years, being 627 as compared with 652 and $\cdot 645$ in the two precoding years. This proportion is abnormally high, Tuticorin being the only other Iudian port where the theoretical proportion, $0 \pm \%$, has been exceeded.

The proportion of the smaller lunar elliptio semi-diurnal tide (L) to the main tide is but very slightly in excess of the theoretioal value, whilst that of the greater co-effioient (N) considerably less, being about a mean of the proportions found in the previous years.

With regard to the two lunar perturbation tides (λ and ν), λ is only one-third as large as was found last year, and approaches more nearly to the theoretioal proportion than has yet been found here, but is still nearly twice as great.

The proportion of ν is nearer to that given by theory than last year's value, but is oonsiderably in excess.

The variational semi-diurnal tide (μ) is nearly the same in value as last year, and its proportion to the main tide approaches very nearly to the theoretical value.

The luni-solar deolinational semi-diurnal tide (R_{a} of K) is nearly exactly the same ns was found for the two preceding years, and at this port is higher in its proportion to the main tide than has been found in any Indian ports except Tuticorin.

With regard to the diural tides, they agree well with the results of the two provious years. The prinoipal one (R, of K) is slightly less than the preoeding years; its value is greater than those found at the ports of the enst ooast and less than those of Δ den and the west const, exoept Bombay.
$\mathbf{R}_{\text {, of }} \mathrm{S}$ is nearly identioal in value and proportion to the main tide with the result of 1878-79, which agrees with the Tutioorin values.

The proportions of the other diurnal tides to the main tide agree closely with the results of the previous years.

The proportion of the solar and lunar declinational tides (P and O) is still greater than was found in the last two years, and very much greater than the maximum value assignod by theory, which is 0.572 , the proportion found this year being 0.931 .

The proportion of J to Q is nearly the same as last year, being greater than theory has assigned, as has generally been found, except at Tuticorin and here in 1878-79.

The proportion of 0 to \mathbb{K} agrees with the former values, and is lower than is generally found.

The overtides call for no speoial remarks; they agree very closely with former values.
With regard to the long-period tides, the lunar monthly is only about half the amount found in the last two years.

The lunar fortnightly agrees well with the former values, whilst the luni-solar fortaightly is twice as large as the previous values.

The solar annual tide is larger than previously found, being 27 per oent of the main tide (but although it has incrensed, the solar semi-annual tide continues to oxceed it), and is 31 per cent. of the main tide, exactly the same proportion which was found last year.

The epooh of the annual tide does not agree very well with that of last year, being more than a month earlier, ocourring early in January, which was nearly the time found in 1878-79.

That of the semi-annual occurs about the middle of May^{2} and November, which is about the same date as the two previous years.

VALUES OF THE TIDAL CONSTANTS, MADRAS, 1881-82.
The following are the amplitudes and epoohs deduoed from the 1881-82 observations at Madras:-

Short-Period Tides.

	s	M	0	\boldsymbol{H}	P	J	Q	L	N	λ	ν	μ	\boldsymbol{R}	T	$\boldsymbol{S M}$	2SM
\boldsymbol{A}																
	2	\ldots	\ldots	\ldots	\ldots	\cdots	\cdots	\cdots
1	0.026	$0 \cdot 002$	0.084	0.297	0.004	0.012	0003	\ldots	[...'.	\ldots	\ldots	\cdots	\cdots	$\cdots \cdots$
1	96.10	63'85	24.60	$59 \% 41$	251.00	31.05	70.07	\ldots'		\ldots	\cdots	..'
R_{2}	$0+45$	1.082	. ${ }^{\text {c. }}$	0.113	\ldots	$0 \cdot 017$	0-297	0.025	0.007	$0 \cdot 040$	0.016	0.056	''	0.022
ϵ_{2}	27.67	28683	258:90	. \cdot.	'.1..	$138 \cdot 70$	$238 \cdot 13$	$100 \cdot 45$	283.24	$103 \cdot 10$	20409	$336 \cdot 71$	\cdots	221 '014
n_{3}	0003	. 3.'	...',	'..'י'	$\cdots \cdot$	'.'*'	\cdots
ϵ_{3}	\ldots	62:00	'..'.'	\cdots	$\cdots \cdot \cdot$	\cdots	\cdots	\ldots	'...'	\cdots	[.'. ${ }^{\prime}$	\cdots	\cdots	\cdots
R_{4}	0000	0001	'"	\ldots	\cdots	$\cdots \cdot \cdot$	$\cdots \cdots$	\cdots'	*.'.'.	\ldots	\cdots	0.001	. ${ }^{\prime} \cdot$
ϵ_{4}	16960	11077'.'	\cdots	\cdots	*...'	$\cdots \cdots$...'.	\ldots	..		62.21	.'...
\mathbf{R}_{0}	0.001	0.011	\ldots	\cdots	\cdots	\cdots	\ldots		"'*		\ldots		...	'..'"
ϵ_{0}	0975	142.48		\cdots	\cdots	\cdots	...	\cdots
H_{H}	0.000	0.001	.'	\ldots	\ldots	\cdots	.	\ldots	\cdots	\cdots	\ldots	\cdots	\cdots	.'.
$\epsilon_{\text {c }}$	Cf: 6	70.24	. \cdot		**	'.''י'	\cdots	-'•'•	"'•''.'.	. ${ }^{\prime}$.	\cdots		\ldots

Long-Period Tides.

Lunar monthly	tide	\ldots	\ldots	$R=0049$	$\epsilon=130^{\circ} .38$
fortuightly	$"$	\ldots	\ldots	$R=0047$	$\epsilon=325^{\circ} 25$
Luni-solar	$"$	\ldots	\ldots	$R=0.034$	$\epsilon=47^{\circ} .88$
Solar annual	$"$	\ldots	\ldots	$R=0.335$	$\epsilon=224^{\circ} .82$
" semi-nanual	$"$	\ldots	\ldots	$R=0.383$	$\epsilon=148^{\circ} .67$

The mean level of the sea (A_{0}) is 2.209 feet above the zero of the gauge, being 0.042 foot less than last year's value.

The main lunar tide (R_{2} of M) agrees well both in amplitude and epoch with the value obtained last year.

The same remark applies to the main solar tide (R_{q} of S).
As may be imagined from the foregoing, the proportion between the two main tides (R_{q} of M and R_{q} of S) is the same, 0.419 , as was obtained last jeer, being less than the theoretical value.

The emaller lunar elliptic semi-diurual tide (L) has an amplitude of not muoh more than one-third of the amount found last year; its proportion to the main tide is considerably less $(\cdot 016)$ than the theoretical proportion, which is $\cdot 027$, and is only about half what has been found at Vizagapatam and Paumben.

With regard to the larger elliptio semi-diuran tide (N), its proportion to the main tide is slighlly less than last year, but is greater than the theoretioal proportion, and very much the same as at Vizagapatam.

With reference to the two evectional tides (λ and ν), λ is nearly the same in value and proportion to the main tide as last yoar, the proportions being much greater than given by theory.

The value of ν is extremely small, and its proportion to the main tide is much below the theoretical value, being less than has yet been found at any Iudian port.

The variational tide (μ) is nearly the same as last year, and its proportion to the main tide is ebout double the theoretical value, whilst at Vizagapatam and Paumben it has been found to be rather less than it.

The solar elliptio semi-diural tides (R and T) linve been deduced for the first time for Madras (two years' observations being necessary). With regard to the smaller component (12), the proportion to the main tide is nearly four times the theoretical value, and is a mean between the values of Vizagapatam and Paumben; whilst the larger component (T) is nearly twice as large as the theoretical value, and is muoh larger than at Vizagapatam and rather smaller than at Paumben. Both these tides approximate nearly in value to those fouud at Beypore.

The luni-solar declinational semi diurnal tide (R_{s} of K) is rather less than in the preceding year, and is in defeot of the theoretical value. It is slightly less than at Vizagapatam, aud only about half what was found at Paumben.

The luni-solar compound semi-diurmal tide (2SM) agrees nearly exaotly with last year's value.

The distinctive fenture of the Madras tides, viz. the wery small proportion which the diurnal tides bear to the main hunar tide, is borne out by the result of this year's obsorvatious.

The solar diurnal tide ($l l$, of S) is cousiderably less than last jear, and agrees with the mean of the two jears at Vizagapatam.

The solar declinational diurnal tide (R_{1} of P) is exactly the same as last year.
The luni-solar deolinational diurnal tide (R, of K) is slightly less than last year, and agrees well with the Vizagapatam value, but is only about half that found at Paumben.
'Ihe proportion of the lunar diuraal tide ($\left[\mathrm{R}_{\text {, of }} \mathbf{M}\right.$) to the main tide is so small as to be barely appreciable, and is the smallest fet cbtained at any Iudian port.

The lunar deolinational diurnal tide (R_{1} of O) is slightly less than last year.
The elliptio diurnal tide (R, of J) is only a little more than one-third the amount that was found last year, and is only half the value at Vizagnpatam and Paumben. The other elliptio diurnal tide (R, of Q) is the anme as last yeur and insignificant in amount.

The lunar and solar over-tides are very small at Madras.
With regard to the long-period tides, the results of this year's observations confirm the very high value of the solar-annual and semi-annual tides, in proportion to the main tide, whioh was found last year, shewing that the mean level of the sea at Madras in November was 17 inches higher than in Mareh and April.

The proportion between the solar aunual tide and the main tide is slightly smaller this year than in the previous one, 0.315 against 0.356 . Ou the other hand, the proportion of the semi-annual tide is considerably greater than last year, being 0.361 ngainst 0.263 . Thus the general effect of these tides in raising the level of the sea is nearly the same as last year.

The epoch of the solar annual tide, which last jear was about the 10 th October, is this year the 2ud November.

The epochs of the somi-annual tide last yenr wore the 20th May and 20th November. This year they are tho 4th June and 4th Deoember.

Thus the maximum combined effect of the solar-annual and semi-nnnunl tides would seem to occur in November, and this is borne out by the tidal diagrams, which give the mean eea-level in November 1.36 feet higher than in March and April.

The lunar monthly tide is slightly larger than last year, and is about a mean between Vizagapatam and Paumben.

The lunar fortnightly tide is a little greater than the last year's value, being very nearly the same ne at Vizagapatam and nbout half the value found at Paumben.

The luni-solar fortnightly tide, whiob last year was hardly apprecinble, is this year considerably larger, and is about the same as the mean of the last three years at Vizag. apatam and Paumben.

VALUES OF THE TIDAL CONSTANTS, VIZAGAPATAM, 1881-82.
The following are the amplitudes and epochs deduced from the 1881-82 observations at Vizagapatam:-

Short-Period Tides.

	s	M	0	K	\boldsymbol{P}	J	Q	\boldsymbol{L}	N	λ	ν	μ	\boldsymbol{R}	T		2SM
Δ_{0}	$4 \cdot 608$	\cdots	*....	*....'	'....."	*.."'	\cdots	\cdots	'.'	\cdots	\cdots	-
\mathbf{B}_{1}	$0 \cdot 036$	0.008	0'140	$0 \cdot 360$	$0 \cdot 117$	0.014	0.004	\ldots	\cdots	..'						
ϵ_{1}	98.47	312's8	258.87	02\%	$250 \cdot 12$	30.85	220.93	'...'.	\cdots	\cdots	\ldots	\ldots
$\mathbf{R}_{\mathbf{g}}$	0.081	12474		$0 \cdot 168$	$0 \cdot 027$	0.294	0.032	0.002	0.016	\cdots	\cdots	\ldots	0.018
ϵ_{2}	280.00	25238'	20720	100.82	249'20	61.98	70.14	$213 \cdot 49$	\cdots	$252 \cdot 29$
$\mathbf{R}_{\mathbf{3}}$'	$0 \cdot 006$	'.....	\ldots	$\cdots \cdot \cdot$...'.'	\cdots'	...	\cdots	..'	...
$\boldsymbol{\epsilon}_{3}$	$38 \cdot 83$	\cdots	\ldots	\cdots	\ldots	...	\cdots	\cdots	\ldots
R_{4}	0.006	0.015	\ldots	\ldots	\ldots''.	\cdots	\ldots	.'.".	\cdots	\cdots	0.014	\cdots
ϵ_{4}	80.10	984.82''.	\cdots	\cdots	. \cdot	1776	'*'
R_{6}	0.001	$0 \cdot 005$'	\cdots	\cdots	\ldots	\cdots	\ldots	**	'.	\cdots	.'*
ϵ_{0}	218.09	29.57		\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	'....	**	\cdots	\cdots	\cdots
\mathbf{R}_{8}	0.003	0.002	\cdots	\cdots	\cdots	\cdots	\cdots'	\cdots	\cdots	\cdots	.'*
ϵ_{8}	00.52	28188-.	\ldots	\ldots	\cdots	\cdots	'.	\cdots	'''

Long-Period Tides.

Lunar monthly	tido	$R=0.051$	$\epsilon=.104^{\circ} \cdot 02$
fortnightly	,	...	\ldots	$R=0.057$	$\varepsilon=337^{0.81}$
Luni-solar	"	$R=0038$	$\epsilon=316^{\circ} \cdot 49$
Solar annual	"	$R=0.577$	$\epsilon=188^{\circ} 65$
semi-annual	"	...		$R=0.458$	$\varepsilon=140^{\circ} \cdot 37$

The value of the mean level of the sea (\mathbf{A}_{0}) this year is $\cdot 1$ of a foot less than last year and 2 less than that of the year before.

The proportion between the two main tides (R_{2} of M and R_{2} of S) agrees very well with the results of the two previous years, and is slightly less than the theoretical value, 0.442 against 0.476.

With regard to the two lunar elliptio tides, the proportion of the smaller of the two (L) to the main side is only half what hes been found in the last two years, and falle as much below the theoretical proportion as it exceeded it before.

The larger component (N) has a slightly less proportion than previously obtained, and approaches very near to the proportion given by theury, being 0.199 agninst 0.192.

The smaller evectional semi-diurnal tide (λ) has nearly exaotly the same proportion to the main tide as was found in the preceding years, about double the theoretionl proportion; whilst the larger evectional tide is hardly apparent at all this year, agreeing with Madras in this peouliarity, as this year's value of this tide at these two places is by far the smallest yet fouvd at any Indian port.

The proportion of the variational tide (μ) to the main tide is less than in the provious years, and is exactly balf the theoretical value.

The proportion of the luni-solar declinational semi-diurnal tide ($\mathrm{R}, \mathrm{of} \mathrm{K}$) is also smaller than in previous years; a mean of the three values would give a value but slightly less than theory aseigns.

The smalliness of the diurnal tides at Vizagapatam is again shown in the results of this year's obeervations. The ohief of these ($\mathrm{R}_{\mathrm{\prime}}$ of K) is oue-quarter of the main tide, whioh is the same as was found in the two preceding years.

The remaining diurnal tides do not differ muoh from the values of the former years, and with the exception of the solar declination diurnal (\mathbf{P}), whioh is slightly larger, they are all of less amplitude than previously found.

The lunar-diurnal tide especially being almost imperceptible.
The lunar and solar over-tides are small, and call for no special mention; the lunar and solar quarter-diurual tides are each about one per cent of the mina tide.

The proportion between \mathbf{P} and \mathbf{O} is larger than theory assigus, but agrees well with the value found at Paumben and Madras.

The proportion between J and Q again departs entirely from the theoretical value, whioh gives \mathbf{Q} about $2 \frac{1}{2}$ times greater than J. Here J is $3 f$ times greater than Q. The same or even a larger value is found at Madras and False Point, and Dublat gives nearly the same results.

The proportion between 0 and \mathbb{K} is smaller than the theoretical one, and it agrees with the value at Paumben and Port Blair, and is less than at any other port except Madras.

With regard to the long-period tides, the solar-annual and semi-annual continue to shew the very higl proportion to the main tide, which is a distinguishing feature of this port, and is only surpassed in India by the two riverain ports of Kidderpore and Moulmein.

The solar-annual tide indeed is less than in the two former years, but is still 39 per oent of the main tide; last year it was 57 per oent. and the year before 49 . Ite epoch this year is the end of September, being the same time as was found two years ago.

The solar semi-annual is greater this year than before, reaching the very large proportion of 31 per cent of the main tide, whiol is larger than has yet been found in any Indian port except at Madras for this same year, when it was 36 per cent. Its epoch is later then before found, ocourring on the lst June and lat December.

The other long-period tides require no special mention.

VALUES OF THE TIDAL CONSTANTS, FALSE POINT, 1881-82.

The following are the amplitudes and epoohs deduoed from the 1881-82 observations at False Point:-

Short-Period Tides.

	\$	M	0	I	\boldsymbol{P}	J	Q	L	N	λ	$\boldsymbol{v} \mid$	μ	\boldsymbol{H}	T	MS	2SM
A_{0}	7.558	\cdots	\ldots	-....	\cdots	\cdots	\ldots	\cdots'	\cdots	\cdots	\cdots	\cdots	\cdots
\mathbf{R}_{1}	0.000	0.015	0.168	$0 \cdot 393$	$0 \cdot 12 \cdot 1$	0.020	0.001	...	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
$\boldsymbol{\epsilon}_{1}$	325'24	17342	2563	64.91	25942	23×11	227'81	\cdots	$\cdots \cdot \cdots$	\cdots	\cdots	\cdots	\cdots
\mathbf{R}_{2}	1.008	$2 \cdot 27$	\cdots	0.247	\cdots	0.063	0.477	0.046	$0 \cdot 165$	$0 \cdot 072$	\cdots	\cdots	\cdots	0.018
ϵ_{2}	301.65	208.80	\cdots	279.25	"**	\ldots	8570	28933	0.857	24183	20.18	\cdots	\cdots	\cdots	197.68
\mathbf{H}_{3}	\cdots	$0 \cdot 012$	\ldots'	\cdots	\ldots	\ldots	\cdots	\cdots	..'	\cdots	\cdots
ϵ_{3}	$30 \cdot 68$	\ldots	\cdots	\cdots	\cdots'	\cdots	\cdots	\cdots	\cdots	\cdots
\mathbf{R}_{4}	0007	$0 \cdot 030$	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	\ldots	'....	\cdots	\cdots	$0 \cdot 039$	\cdots
ϵ_{\downarrow}	\$9110	9.20-10'.	$\cdots \cdots$	\cdots	\cdots	270'33	\cdots
\mathbf{R}_{3}	0.003	0.000	\cdots	\ldots	\cdots	\cdots	\cdots
ϵ_{0}	159.44	7400	\ldots'	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots
$\mathbf{R 8}_{8}$	00003	0008	...''	\ldots	\cdots	-'	\cdots	\cdots
ϵ_{B}	218 准	221.10'	\ldots		\cdots		..	\cdots	\cdots	\cdots	\cdots	\cdots

Long-Period Yides.

Lunar monthly	tide	$R=0.055$	$53^{\circ} \cdot 15$
", fortnight		\ldots	...	$R=0.055$	$=13^{\circ} 68$
Luni-solnr	"	$\boldsymbol{R}=0.042$	$\epsilon=280^{\circ} .81$
Solar anmual				$R=0.746$	$\epsilon=166^{\circ} \cdot 12$
semi-annual		\ldots		$R=0.364$	$\epsilon=142^{\circ} .23$

The mean level of the sea is found to be 7.552 feet above the zero of the gauge, or 12.99 feet below bench-mark A.

The main tides of S and M have amplitudes of 1.01 and 2.27 feet respectively, exemplifying the ivoreasing amplitudes of the tides of the ports on the east const, goiug north from
Paumben.

The proportion between the two main tides is 0.442 , which is a little less than the theoretical proportion of 0.476 . This proportion is nearly exaotly the same as is found at Vizag. apatam, and slightly groater thau at Madras.

With regard to the two lunar elliptio tides, the proportion of the smaller of the two (L) to the mnin tide is exactly what is given by theory 027 , and agrees well with the mean values at Vizagapatam and Madras.

The larger component (N) also agrees very fairly with the theoretionl value, being 0.210 against $0 \cdot 192$. The Vizagapatam mean value is almost identical, and the Madras value slightly larger.

The smaller evectional semi-diurnal tide (λ) hns a value about three times the theoretical one, and about a mean between the Madras and Vizagapatam values. The theoretical value of this tide has been exceeded in all the Indian ports, except the three on the west conat.

The larger evectional tide (ν) is twioe the theoretical proportion, in this instance differing from the two other east const ports, where the mean value of this tide hae nearly egreed with theory.

The variationol tide (μ) is about half as-large again as it should be theoretically; its value being about a mean between the mean values at Madras and Vizagapatam.

The proportion of the luni-solar declinational semi-diurnal tide (R_{2} of K) to the main tide is rather less than theory assigns; the value found here agrees well with the means of Madras and Vizagapatam.

One of the distinguishing features of the tides at this part, as at the other two east const ports, is the very emall proportion which the diurnal tides bear to the main lunar tide. Thie is more marked here than at either Madras or Vizagapatam, which may be shown by the fact that at Madras the sum of all the diurnal tides would equal 52 per oent of the main lunar tide; at Vizagapatum 49 per cent, and at False Point only 33 per cent.

The chief diurnal tide (R , of K) is hardly 18 per cent of the main tide. The lunar and soler diurnal tides are insignificant; as are also the two lunar elliptio diurnal tides J and Q; whilst the solar and lunar declinational diurnal tides, P and 0 , are only 6 and 7 per cent respectively of the main tide.

The over-tides of S aud M are all insignificent in amount, and call for no speoial mention.
With regard to the long-period tides. The solar annual, althoush not so large as at Vizagapatam, amounts to 33 per cent of the main tide, which is almost the same proportion as was found at Madras.

The solar semi-annuel is about half the proportional amount whioh was found at Madras, and two-thirds of the value at Vizagapatem.

The time of maximum of the solur-annual tide at False Point is the 4th September, and the maxima of the semi-annual tide occur on the lat June and December.

At Vizagapatam the maximum of the solar annual tide seems to occur during the latter portion of September, and at Madras in October.

The times of maxima of the semi-annual tide seems to be nearly the same for all the three east coast ports and for Purt Bloir.

The lunar long period tides are smaller in proportion to the main tide than have been found either at Madras or Vizagapatam, but they call for no special comment.

VALUES OF THE TIDAL CONSTAN'SS, KIDDERPORE, 1881-82.
The following are the amplitudes and epochs deduced from the 1881-82 observations at Kidderpore:-

Short-Period Tides.

	s	M	0	\boldsymbol{K}	\boldsymbol{P}	J	Q	\boldsymbol{L}	N	λ	ν	μ	\boldsymbol{R}	T	If s !	2SM
Δ_{0}	10'730	.	\ldots \cdot.	-....	\cdots	\cdots	. $\cdot \ldots$	\cdots	\cdots	\cdots
${ }_{1}$	$0 \cdot 09$	$0 \cdot 020$	0'220	$0 \cdot 388$	0.140	0.010	$0 \cdot 038$	\cdots	\cdots	\cdots'.	...	\cdots
ϵ_{1}	100.98	221.08	302.60	19878	311.05	72.24	278.51	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
\mathbf{R}_{2}	1-427	$3 \cdot 683$..	0.409^{1}	\ldots'	$0 \cdot 100$	$0 \cdot 085$	01127	$0 \cdot 327$	$0 \cdot 220$	\ldots	\ldots	\ldots	0085
ϵ_{2}	101.81	50.49	7201	\cdots	25070	45.88	808.05	$365 \cdot 89$	109.00	' ${ }^{\prime}$	1869
\mathbf{R}_{3}	0012	\ldots	\cdots	\cdots	\ldots	*....	*'."	\cdots	\cdots	\cdots
ϵ_{3}	...	$331 \cdot 8$	\ldots	\cdots	\ldots'	\cdots	'....'	\ldots	. $\cdot .$.	'"	\cdots
R!	0.068	$0 \cdot 750$,	\ldots	\ldots	\cdots	\ldots	0.653	..'
ϵ_{4}	$120 \cdot 15$	34.62	\ldots	\cdots	\cdots	\cdots	'..'י"	\cdots	\cdots	\cdots	..	78.97	"*
$\mathbf{R}_{\boldsymbol{A}}$	0.009	0.10 .4	\ldots	\cdots',	...	- ${ }^{*}$
ϵ_{6}	20037	315				\ldots	\ldots	\ldots	\cdots	\cdots	\ldots'
H_{3}	0.000,	0'078	-	\ldots	\ldots	\ldots	'....	\cdots	\ldots	$\cdots \cdots$	\ldots	\cdots	-"
	92776	26.63	\ldots'.'*	*....	\cdots	. ${ }^{\prime}$	\cdots

Long-Period Tides.

Lunar month	tido $R=0.329$	$\epsilon=0^{\circ} 38$
fortnightly	 $R=0.278$	$\varepsilon=17^{\circ} \cdot 18$
Luni-solar	" $R=0.8388$	$\underline{=}=36^{\circ} \cdot 56$
Solar-annual	"	...	$R=2.809$ $R=0.935$	$\epsilon=15 i^{\circ} \cdot 08$ $\epsilon=204^{\circ} .56$
semi-annual	"	...	$R=0935$	204*

The mean level of the river from this year's observations is 10.739 feet above the sill of the Kidderpore Dock. The mean value of the five former years being 10.489 feet, the present value is therefore 3 inches bigher.

The tides at Kidderpore, owing to its situation high up a large river, are not comparable with those of any of the Indian ports, except Rangoon and Moulmein, whose situation is similar ; and it is with the results of the observations at these ports that the comparisons are chiefly made.

The amplitudes of the main tides of S and M are slightly greater than the mean of the previous values. Their epochs are nearly identical with the value in 1877.78, but difer by 22 minutes from the menn value of the five years which had been previously used.

The proportion between the main tides is less than the mean value obtained before, and considerably less than the theoretical value, being 0.393 against 0.476 ; it is rather more than the value obtained at Rangoon and Moulmein, which is 0.360 .

The main lunar elliptio semi-diurnal tide (K_{r} of N) has a proportion to the main tide nearly exactly the same as given by theory, 0.189 against 0.192. This is identically the same proportion as was found to obtain both at Moulmein and Rangoon.

The smaller component (L) has a proportion of about twice thut given by theory, but approaching it more nearly than at Moulmein and Rangoon.

The larger evectional semi-diurnal tide (ν) is 9 per cent of the main tide, the theoretical value being a little less than 4 per cent. This is the same value as found at Rangoon, but a little larger than at Moulmein.

The smaller evectional semi-diurnal tide (λ) is five times as great as the theoretical proportion; the value of this tide is very large in proportion at Dublat also, and all the stations in Burma.

The proportion of the varintional semi-diurnal tide (μ) to the main tide is slightly less than before obtained, and is about three times greater than the theoretival proportion; at Moulmiein and Kangoon it is found to be four times as great.

The proportion of the luni-solar deolinational tide (R_{8} of K) to the main tide is very nearly the theoretical one, being 0.113 against 0127 ; it is highur here than at Moulmein and Haugoon.

The proportion of the luni-solar compound semi-diurnal tide to the main tide is -023, whioh is nenrly the same as was found at Dublat, but is one-third less than at Moulmein and Rangoon.

The proportions of the diurnal tides to the main tide are smaller than were previously found : the chief diurnal tide ($\mathrm{R}_{\text {, }}$ of K) being only 10 per cent of the main tide, in this it agrees with the other two riverain ports, where it is 12 per cent.

All the diurnal tides in the Bay of Bengal have smaller proportions to the main tide than prevail in the Indian Ocean, and their proportion seems to be exceptionally small in the riverain ports.

With reference to the over-tides of S, the quarter-diurnal tide R_{4} of S is 5 per cent of the main tide, which is the same as at Moulmein and Rangoon; the other over-tides are insignificant.

The lunar over-tides are larger in proportion than the solar, the lunar quarier diurnal being 21 per cent of the main tide-an amount whioh has only been equalled at Moulmein, where it is 24 per cent, whilst at Hangoon it is only 7 per cent.

The lunar sexter-diurnal over-tide (R_{n} of M) is also very great in proportion, being 4 t per cent of the main tide, which is the largest proportion yet obtained in India, but which is very nearly equalled at Rangoon. The remaining over-tide R_{s} of M is 2 per cent of the main tide, being the largest value yet obtained in India.

The compound luni-solar quarter diurnal tide (MS) is 13 per cent of the sum of the amplitudes of the two main tides (R_{v} of S and R_{2} of M) with the exception of Moulmein, where it is 14 per cent. This also is the largest value yet obtained in Iudia.

With regard to the long-period tides, their very large proportion, compared with the main tido, is again apparent.

The chief tide of the solar nanual is 77 per cent of the main tide. which is the largest value ever yet found. At Moulmein, where the next largest value was found, it was 64 per cent, and at Raugoon 29 per cent. The epoch of this tide is very nearly the mean epach of the former years, shewing it to occur on the 88 th August, and indicating that ite cause may be oscribed to rainfall.

The solner semi-annual tide is 26 per cent of the main tide, which is considerably more than was found either at Moulmein or Rangoon. The epoch of this tide differs greatly from the mean, or any of the values of former yenrs; from this year's observations its maximum should occur at the beginuing of July aud January, whilst the former dates were the beginning of September and March.

The next in importanco is the luni-solar fortnightly tide, which is 23 per cent of the main tide, which is remarkably high, though exceeded at Moulmein, where it is 29 per cent. At Raugoon it is 9 per oent.

The lunar fortnightly tide is 8 per oent of the main tide, and the lunar monthly 9 per cent, both these proportions being considerably in excess of what has been found at any Indian port oxcept Moulmein, Paumben, and Befpore.

VALUATION OF THE TIDAL CONSTANTS, DIAMOND HARBOUR, 1881-82.
The following are the amplitudes and epoobs deduced from the 1881-82 observations at Diamond Harbour:-

Short-Period Tides.

Long-Period Iides.

Lunar monthly	tide	$R=$	
Lüni-solar fortighty	",	\ldots	\ldots		年
Solar a				$R=$	
semi-annual	",	...		R	吕

The mean level of the river at Diamond Harbour (A_{o}) is 9.263 feet above the level of the zero of the gauge, which is the level of the Kidderpore Dock sill. The river-level at Kidderpore is 10.74 feet above the sill of the dock, whilst the sea-level at Dublat is approximately 8.55 above the same point.

The amplitudes of the main solar and lunar tides are greater than at Kidderpore or Dublat. The epoch of the main lunar tide differs from the mean of the previous years by about 10 minutes. The crest of this tide will reaoh Diamond Harbour about 1 hour j0 minutes after Dublat and 2 hours and 26 minutes before Kidderpore

The proportion of the main solar to the main lunar tide is 0.423 , which is rather less than the mean of the previous years, and somewhat in defeot of the theoretioal value, but is the largest found as yet at any riveraiu port.

The proportion of the smaller lunar elliptio semi-diurnal tide (R_{2} of L) to the main tide is but elightly in excess of the theoretioal value, being 031 against 027 . This is nearly the same proportion ae was found at Dublat, and considerably less then nt Kidderpore.

The larger oomponent (R , of N) may be said to be theoretioally correct in its proportion to the main tide, whioh is the same result as was found at Kidderpore.

The smaller eveotional tide (λ) is about five times as great as the proportional value given by theory. This is the same as at Kidderpore.

The larger component (ν) is about twice as great as theory gives, which aleo agrees closely with the Kidderpore value.

T'he proportion, of the varintional semi-diuraal tide to the main tide is about twioe the theoretical value. It is slightly less than at Kidderpore and little larger than at Dublat.

The proportion of the luni solar declinational tide to the main lunar tide is very vearly what is given by theory, being 0.118 against 0.127 . Kidderpore and Dublat both give 0.113 .

The luni-solar compound semi-diurnal tide (2 SM) is 2 per cont of the main tide, which is the sanue as found at Kidderpore and Dublat.

All the dirrmal tides at Diamond Harbour are very sanall, agreeing in this with what was found at Kidderpore and Dublat. The tutal value of all the diurnal tides at Kidderpore is only 25 per cent of the main tide, whilst at Diamond Harbour and Dublat it is only 20 per cent, the smallest value yot found in India.

The ohief diurnal tide (R_{1} of K) is only 9 per cent of the main tide, which is a very small value, whilst the solar-diurnal tide is not 2 per cent and the lunar-diurnal less than 1 per cent.

The solar quarter-diural tide (R , of S) is 5 per cent of its main tide, which is the proportion which has been found at Kidderpore, and also at the other riverain ports. The other over-tides of S are insignificant.

The lunar quarter-diurnal tide (R, of M) is 15 per cent of the main tide, which is less than was found at Kidderpore or Moulmein, but is twice as great as at Rangoon.

The eexter-diurnal (R_{6} of S) is 3 per cent of the main tide, agreeing in this with the other riverain ports.

The proportion of the amplitude of the oompound luni-solar quarter-diurnal tide (MS), as oompared with the sums of the amplitudes of the two main tides (K_{2} of S and R_{8} of M), is 0.093 , which is slightly less than found at Kidderpore.

The long-period tides have not been evaluated, pending a correction in the formula for their reduction.

VALUES OF THE TIDAL CONSTAN'TS, DUBLAT, 1881-82.

The following are the amplitudes and epochs deduoed from the 1881-8: observations at Dublat :-

Short-Period Tides.

	s	M	0	\boldsymbol{K}	\boldsymbol{P}	J	Q	L	\boldsymbol{N}	λ	ν	μ	\boldsymbol{R}		M 4.5	23^{3}
Δ_{0}	14804,	\ldots	\cdots' ${ }^{\prime}$.'."	\cdots	\ldots	\cdots	**	..	'.
R_{1}	$0 \cdot 044$	$0 \cdot 013$	0.174	0.486	0.168	$0 \cdot 030$	0.010	\cdots	\ldots	\cdots	*..."	' ${ }^{\prime}$. ${ }^{\prime}$...	\cdots
ϵ_{1}	$08 \cdot 12$	0210	258'00	74.60	245\% 50	0860	$220 \cdot 42$	\ldots"	\cdots	*.	\cdots	\cdots
R_{2}	2.053	4670	0.529''.	$0 \cdot 161$	1.054	0.302	0'274	0229	\ldots	-•	\cdots	0.098
ϵ_{2}	320.81	285.08	202.05	\cdots'	05-29	282.84	100.98	$258 \cdot 92$	0.07	\cdots	\cdots	\cdots	100'74
\mathbf{H}_{3}	\ldots	$0 \cdot 050$.. \cdot.	\cdots,'	\ldots	\cdots	\ldots	\ldots	..'	\cdots	\cdots	'*
ϵ_{3}	\cdots	128.10	\ldots	\ldots	$\cdots \cdots$	\ldots	*....	\ldots	\cdots	".	. ${ }^{\prime}$	\cdots
R_{4}	0025	$0 \cdot 109$	\ldots	\cdots''.	*....	...'.'	\cdots	\ldots	\cdots	\cdots	**	0.095	\cdots
ϵ_{4}	202.4	138*49	'...'.'	\cdots	\cdots	\ldots	'.'	\cdots	$160 \cdot 23$..'
\boldsymbol{R}_{0}	0'002	0.015	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
$\boldsymbol{\epsilon}_{6}$	120 47	$208 \cdot 03$	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots	\cdots
\mathbf{R}_{8}	0.004	0.015	\cdots	\cdots	\cdots	\cdots	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots
ϵ_{8}	116.9.5	30781'	\cdots	\cdots	\cdots	\cdots	'..

Long-Pcriod Tides.

Lunar monthly	tide	...		$R=0047$	$\epsilon=$	$29^{\circ} \cdot 34$
fortnightly	"			$R=0.051$	$\epsilon=$	$37^{\circ} 12$
Luni-solar ",	"	...		$R=0050$	ϵ	$279^{\circ} \cdot 70$
Solar annual	"	$R=0.796$	ϵ	$146^{\circ} 93$
" semi-annual	"	...		$R=0.234$	$\epsilon=$	$162^{\circ} \cdot 17$

The mean level of the sen at Dublat was found to be 14.394 feet above the zero of the gauge, and therefore 8.58 feet below benoh-mark A.

The position of Dublat is on the sea near the mouth of a large river, and this situation it shares with three other tidal stations in the Bay of Bengal, viz. False Point, Elephant Point, and Amherst, and, allowing for differences of geographical position, we should expect to find the same peculiarities in the tides of all four.

The proportion of the main sular to the main lunar tide is rather less than the theoretical one, being 0.439 against 0.476 . The mean proportional value of the four estuary ports is 0.434 .

The smaller lunar elliptio semi-diurnal tide (L) at Dullat exceeds the theoretical proportion, as also does the larger component (N). In this also the other estuary ports shew similar values.

With regard to the eveotional semi-diurnal tides, the smaller (λ) is very nearly ten times greater than the theoretical value. It is nearly the same value as found at Amberst, nnd these with Elephant Point give the highest proportions for this tide yet found in Indis.

The larger oomponent (v) has also a value about 50 per cent greater than theory gives, but the other estuary ports have a etill higher value than this.

The variational semi-diurual tide (μ) has more than double its theoretioal proportional value.

The proportion of the luni-solar deolinational semi-diurnal tide (R_{2} of K) to the main tide is very slightly less than the theoretical value. In this it agrees well with Fulse Point. One of the chief features of the Dublat tides is the exoeedingly small proportion whioh the diurnal tides bear to the main lunar tide. This is a general feature in all the stations in the Bay of Bengal ; but it is most marked at Dublat, where the sum of all the diurnal tides only equals $19 \frac{1}{2}$ per oent of the main tide. The lowest value before obtained was 25 per cent at Kidderpore and Rangoon, whilst at the two other estuary stations it is 28 per cent.

The chief diurnal tide (K, of K) is only 10 per cent of the main tide. The lunar and solar diurnal tides are insiguificant, as also the two lunar elliptio diarnal tides, J and Q, whilst the solar and lunar declinational diurnal tides (P and O) are only 3 and 4 per cent respoctively of the main tide.

The over-tides of S and M call for no speaial remark. They are all very small; the largest, the quarter-diurnal lunar tide, being only 2 per cent of the main tide.

All the long-period tides are small at Dublat. They are nearly the same in total proportional amount as was found at Elephant Point.

The three lunar tides are each only 1 per cent of the main tide.
The solar annual tide is 17 per cent, and the semi-annual 5 per cent.
The time of the maximum of the solar annual tide was the 18th August. This tide seems to occur earlier as one goes up the Bay. At Madras it is in Ootober, at Vizagapatam late in September, at False Point early in September, and here in the middle of August.

The times of maxima of hesolar semi-annual are the 12 th June and Deeember, vory nearly the same time as at False Point.

VALUES OF THE TIDAL OONSTANTS, RANGOON, 1881-82.
The following are the amplitudes and epoohs deduoed from the $183 \mathrm{~L}-82$ observations at Rangoon:-

Short-Period Tides.

	s	31	0	\boldsymbol{K}	\boldsymbol{P}	\boldsymbol{J}	Q	\boldsymbol{L}	N	λ	ν	μ	\boldsymbol{R}	T	MSS	283
\mathbf{A}_{0}	1+080		\cdots	\ldots	\ldots	\ldots	$\cdots \cdots$..' ${ }^{\prime}$	\cdots	\cdots	\cdots	\cdots
R_{1}	0'129	0.000	0285	0'609	0.148	$0 \cdot 023$	00023	\ldots	'.....'*	'.....	\cdots	-•'	\cdots	\cdots
ϵ_{1}	$128 \cdot 72$	34711	308'91	116.40	321*69	169.50	30969	...	\cdots	\cdots	\ldots	\cdots	-•'	\cdots	.'
n_{2}	$2 \cdot 003$	S'675	\cdots	0.698	\cdots	0.315	00359	$0 \cdot 293$	0'391	0.510	0.117	$0 \cdot 200$	-..	$0 \cdot 167$
ϵ_{2}	170.37	$120 \% 64$	165\% 6'.'	322-32	117/51	177	72'39	290.01	167'20	207.36	\cdots	$00 \cdot 36$
\mathbf{R}_{3}	*...'	$0 \cdot 016$',	\ldots',	\cdots	\cdots	*'	**	\cdots	\cdots
ϵ_{3}	'...'	151.40	\cdots	\cdots	...'.'	،....	\cdots	\cdots	\ldots	\cdots
$\mathbf{R}_{\boldsymbol{4}}$	0.088	0.489	\cdots	\cdots	'....'	\ldots	\cdots	0.410	. ${ }^{\text {a }}$
ϵ_{4}	256-12	16717	\ldots	\ldots	\cdots'	\ldots	'...'	-••'	-••	..'	410.13	\cdots
$\mathbf{H}_{\mathbf{g}}$	0.009	0.234	\ldots	\ldots"'.	'...'	'.1.'.	\cdots	.'.	'*	'"	\cdots
$\epsilon_{\text {f }}$	30.20	82.61 \cdot.'*'	\cdots	\cdots	\cdots	'.'	\cdots
R_{B}	$0.00: 3$	0.087	\ldots''	\cdots	\ldots	\ldots	\cdots	\cdots	\cdots
ϵ_{8}	117'47	08:05''	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots

Long-Period Tides.

Lunar monthly	tide	$R=0238$	$\epsilon=$	$8^{\circ} 83$
fortaightly		...		$R=0208$		
luni-solar	"	...	\ldots	${ }^{R}=0.565$	$\epsilon=$	
Solar annual	"'	\ldots	\cdots	$\begin{aligned} & R=1.415 \\ & R=0.012 \end{aligned}$	${ }_{e}^{\varepsilon}=$	$\begin{aligned} & 153^{\circ} \cdot 23 \\ & 314^{\circ} .51 \end{aligned}$

The value of mean sea-level (A_{n}) this year is 094 foot lower than by last year's determination.

The main solar and lunar tides agree almost exactly in amplitudes and epools with last yenr's results. The proportion between them is therefore nearly the sanme ne last yenr, yering 0.359 againat 0.363 , both values being considerably in defect of the theoretioal proportion, 0.476 , as has been found at all the river stations.

The smaller lunar olliptio semi-diurnal tide (L) is condiderably less than last year, but is still more than double its theoretioal proportional value.

The larger component (N) is slightly smaller than last year; but approachos very nearly to the proportional value given by theory, with which it last year was almost identical.

With regard to the evectional tides, the smaller (λ) is identical with last year's value, and is about eight times larger than the theoretioal value, whioh is the same result as was found at Moulmein.

The larger component (ν) is about one-third less than last year, but is still 50 per cent greater than the theoretical proportional value.

The variational tide (μ) is the same in value as last year, which is four times the proportional value given by theory.

The solar elliptio semi-diurnal tides (R and T) have been deduced for the frist time this yoar (two years' obsorvations being necessary).

The smaller component (R) is about five times greater than its proper proportional value; in this it agrees well with the results obtained for this tide at Moulmein.

The larger component (T) has also the same proportional value as was obtained at Moulmein, whioh is nearly twice as great as theory gives.

The luvi-solar declinational semi-diurnal tide (R, of K) is nearly identioal with last year's value, as also is the luni-solar compound semi-diurnal (2SM).

The diurnal tides at Rangoon are again very small, and agree almost exactly in proportional value with last year's results. Both here and at Moulmein their total amount is only 25 per cent of the main tide, whioh is also the case at Kidderpore, shewing that the diurnal inequality does not greatly affeot tides in rivers.

The lunar and solar over-tides are very accordant with what was found last year.
The solar quarter-diurnal is 4 per cent of the main tide, and the lunar quarter-diurnal is 8 per cent ; the sexter-diurnal lunar over-tide (R_{6} of M) is also 4 per cent of the main tide. The large values of these over-tides is due to the position of the place, separated from the sea by a considerable length of shallow water, and the same phenomenon is found in the Hughli and Moulmein rivers.

With regard to the long-period tides, the lunar tides have muoh the same proportion to the main lunar tide as was found last year. These, as well as the solar long-period tides, are considerably less in proportion than at Moulmein and Kidderpore.

The solar annual tide is 25 per cent of the main tide ; last year it was 29 per cent, whilst the semi-anuual tide is very small.

The epool of the annual tide is about nine days later than last year, oocurring on the 24th August.

VALUES OF THE TIDAL CONSTANTS, ELEPHANT POINT, 1880-81.
The following are the amplitudes and epoohs deduoed from the $1880-81$ observations at Elophant Point:-

Short-Period Tides.

	s	M	0	F	P	J	Q	\boldsymbol{L}	N	λ	ν	μ	\boldsymbol{R}	T	JPS	2S.K
\boldsymbol{A}_{0}	16'65: ${ }^{\text {a }}$.	\cdots	. ${ }^{\text {c... }}$	\cdots	\ldots	\cdots	\cdots	\cdots	'"'	".
n_{1}	0.113	0'022	0.356	0.817	0.190	0.119	0.019'	\ldots	.'. ${ }^{\text {P }}$	\cdots	\ldots	\cdots	\cdots	*'	. ${ }^{\prime}$
ϵ_{1}	70:37	299.05	27714	$99 \cdot 13$	302.59	13778	260.34	**'*	\ldots	\ldots	-•'	\cdots	...
R_{2}	2.837	$5 \cdot 870$	$0 \cdot 405^{\prime}$	0.48	1546	0060	$0 \cdot 692$	0.957	\cdots'.	0.042
ϵ_{2}	143'11	100m	.. \cdot.	7304	\ldots	\ldots	278\%	7780	$383 \cdot 14$	206.42	275'14	\cdots	\cdots	\cdots	$96 \cdot 57$
\mathbf{R}_{3}	\ldots	$0 \cdot 025$	\ldots	\cdots	\cdots'	\cdots	\ldots	\cdots	\cdots	\cdots	. $*$
ϵ_{3}	142:80	\ldots	\ldots	\ldots	\cdots \cdot. ${ }^{\text {a }}$'	\cdots	\cdots	...	\cdots
R_{4}	$0 \cdot 037$	0079	\ldots	\cdots	\cdots	0.135	'.
ϵ_{4}	162:30	41.90 3.	. ${ }^{\text {. }}$.',	\ldots	\ldots'	\cdots	-••	14'45	\cdots
H_{6};	$0 \cdot 031$	$0 \cdot 200$*	\ldots	\cdots	\cdots	\cdots	".	.'	..
ϵ_{0}	113.01	31271	\cdots	*...'	\cdots' $\cdot \cdots \cdot$	\cdots	\cdots	\ldots	\cdots
$\mathrm{R}_{\mathbf{g}}$	$0 \cdot 008$	0.031			-'''	' ${ }^{\prime}$	'"	\cdots	\cdots
ϵ_{q}	60'07	$813 \cdot 85$	\cdots	\ldots	\ldots	'.'	\ldots	\cdots	\cdots

Long-Pcriod Tides.

Lunar monthly tide
". fortnightly $"$
Lumi-solar " ",
Solar nunual "
" semi-annual ""
$\begin{array}{llll}\ldots & \ldots & R=0.145 & \epsilon=5^{\circ} \cdot 85 \\ \cdots & \cdots & R=0.102 & \epsilon=286^{\circ} \cdot 61 \\ \cdots & \cdots & R=0.059 & \epsilon=275^{\circ} \cdot 34 \\ \cdots & \cdots & R=0.930 & \epsilon=145^{\circ} 63 \\ \cdots & \cdots & R=0.261 & \epsilon=198^{\circ} .43\end{array}$
\qquad

The gauge at Elephant Point being situated nearly on the sen at the mouth of a large river, the tides here nre comparable first with Amberst, similnry situated on the opposite side of the Bay about 100 miles distant, where we should expect the same phenomena to prevail, and with Dublat and False Point, also situated at the mouths of large rivers.

The mean sea-level was found to be 16.55 feet above the zero of the gnuge.
The amplitudes of the two main tides (\mathbf{K}_{2} of S and \mathbf{R}_{g} of \mathbf{M}) are $2 \cdot 3$ feet and 5.9 feet respectively, the oorresponding values at Amherst being 2.9 and 62 . The proportion of the main solar to the main lunar tido is 0.398 , which is less than that found at any of the other estuary ports, and considerably less than the theoretioal value, 0.476 .

The proportion between the smaller of the lunar elliptic semi-diurnal tides (L) and the main tide is about $2 \frac{1}{2}$ times that given by theory, whilst at the other estuary ports the agreement is close.

With regard to the larger componeut (N), it is rather grenter than the theoretical proportion, being 0.263 against 0.192 .

The two lunar perturbational tides (λ and ν) are very muoh larger than assigned by theory, and are the largest proportions yet found in India.

The variational semi-diurnal tide (μ) is about three times as great as theory allows, and is nearly the same proportion as is found at Amberst.

The luni-solar compound semi-diurnal tide ($\mathbf{R}_{\text {, }}$ of K) has a value of only about half the theoretical one. In India this tide has generally been found to agree very well with theory.

The luni-solar compound semi-diurnal tide (2SM) is very small at Elephant Point, only about one-fourth the value found at Amberst and one-third the value at Dublat. A' distinctive fenture of the Elephnnt Point tides is the small value of the diurnal tides; in this it agrees with Amherst, Rangoon, and all the stations in Burma and the Bay of Bengal generally. The must important of the diurnal tides, the luni-solar declinational diurnal tide, is only 14 per cent of the main tide, whilst on the west const of India it ranges from 40 to 80 fer cent.

The solar diurnal is only about one-half the proportional value to the main tide that is generally found in India. R_{1} of O, the lunar declinational diurnal tide, is less than ose-third of the general proportional value, whilst the other diurual tides are insignificant in their proportion to the main tide.

There is nothing to oall for epecial remark in the over-tides either of S or M , except the rather large value of the sexter-diurnal lunar tide.

With regard to the long-period tides, they have small proportional values as compared with the other Burman ports, but agree very well with the values found at Dublat.

The lunar long-period tides are all considerably less in value than the general mean of Indian values.

The solar annual tide is 16 per cent of the main tide; at Dublat it is 17 per cent, and at Amherst 10 per cent.

Its time of maximum oocurs at the middle of August, which is the same time as has been found at Rangoon.

VaLUES OF THE TIDAL CONSTANTS, MOULMEIN, 1881-82.

The following are the amplitudes and epochs deduced from the 1881-82 observations at Moulmein:-

Short-Periorl Tides.

Long-Period Tides.

Lunar monthly	tide	\ldots		$R=0.459$	$=$	$17^{\text {c. }} 43$
" fortnightly	"	\ldots		$R=0.346$	$\epsilon=$	16\%25
Luui-solar ,	"	...		$R=1 \cdot 110$	$\boldsymbol{\epsilon}=$	$49^{\circ} 86$
Solar annual	"	\cdots	...	$R=2 \cdot 389$	$\varepsilon=$	$1.52^{0.84}$
" semi-annual	"	...		$R=0.653$	$\epsilon=$	2930.89

The value of the mean sea-level (A_{0}) above the zero of the gauge is foand to be 0.2 foot greater from this year's observations than from the last.

The amplitudes of both the main tides are slightly less this year than last. The proportion between them, $0 \cdot 359$, is almost identically the same as last year, and is much less than the theoretical value, $0 \cdot 476$. It is nearly the same proportion as is found at Rangoon.

The lesser lunar elliptic semi-diurnal tide (L) is nearly half as large again as last year, and its proportion to the main tide is nearly four times greater than assigned by theory, being rather larger than the proportion found at Rangoon, and nearly twice as great as that at Kidderpore.

The larger component (N) has nearly the same proportion as last year, and is but slightly in defect of the theoretical value, being 0.182 against 0.192 ; Kidderpore and Rangoon both being $0 \cdot 189$.

With regard to the lunar perturbational tides, the evectional tide (λ) is one-third higher in its proportion to the main tide than was found last year, being 067 against $\cdot 041$. This is very much higher than the theoretical proportion, which is ouly 007 , but agrees well with the values found at Dublat, Amberst, and IRangoon.

The proportion of the larger component (ν) is $\cdot 0.58$, theory giving $\cdot 037$.
The proportion of the variational tide (μ) is about four times the theoretical one, being $\cdot 086$ against $\cdot 022$. Rangoon gives 090 and Kidderpore $\cdot 063$.

The solar elliptio semi-diuranal tides (R and T) have been deduced for the first time this year (two years' observations being necessary). With regard to the smaller component (R), its proportion to the main tide is $6 \frac{1}{2}$ times the theoretical value, and is the highest value yet obtained for this tide except one year at Kurrachee, and lately at Amherst. The larger component (T) has a proportion about twice that given by theory-a result whioh differs little from what has been found at several of the other ports.

The luni-solar deolinational semi-diurnal tide (R_{2} of K) is less this year, being only 7 per cent of the main tide, or about half the theoretical proportion. The luni-solar compound semi-diurnal tide is very much the same as was found last year, and agrees well with what was found at Rangoon.

The diurnal tides are nearly identical this year with the values of the previous one, and their values are very small, as was also found at the riverain ports of Rangoon and Kidderpore.

The quarter-diurnal tides, both solar and lunar, are nearly exaotly the same in amount as was found last year; the solar over-tide being 5 per cent and the lunar 24 per cent of the main tide. This very large proportion is a marked characteristic of the Moulmein tides, which has been found at no other place exoept at Kidderpore, where the two combined are equal to 25 per cent of the main tide.

With regard to the long-period tides at Moulmein, the solar annual tide is by far the largest, being 64 per cent of tho main tide. The same value was found last year. This is the largest proportion found anywhere save at Kidderpore. Its epoch agrees very well with last year, and is about the middle of August, shewing that it has to do with the rainfall.

The solar semi-annual tide this year is 17 per cent of the main tide Its times of maximum agree exactly with those of last year-the middle of August and the middle of February.

The solar monthly tide is rather larger than last year, and is 12 per cent of the main tide, the bighest value yet obtained at any Indian port.

The lunar fortnightly tide is slightly larger than last jear, amonnting to 9 per cent of the main tide, which is a very high ralue.

The luni-aolar fortnightly tide is aiso slightly lngger than lnst year, and is actually 30 per oent of the main tide-an abnornally high value-whioh is only approaohed by Kidderpore, where this tide was 23 per cent of tho main tide.

VALUES OF THE TIDAL CONSTANTS, AMHERST, 1880-81.

The following are the amplitudes and epoohs deduced from the 1880-81 observations st Amherst:-

Short-Period Tides.

	\boldsymbol{S}	M	0	\boldsymbol{K}	\boldsymbol{P}	J	Q	\boldsymbol{L}	\boldsymbol{N}	λ	$\boldsymbol{\nu}$	μ	\boldsymbol{R}	T	MS	28M
A_{0}	13.601'.	$\cdots \cdots$	\cdots	\cdots	*....*	*..."*	*....	'....	**'.'	\cdots	\cdots	**	\cdots
\mathbf{n}_{1}	$0 \cdot 420$	$0 \cdot 052$	0.512	0.071	0'132	0111	0.064	*'."'	$\cdots \cdot \cdot$	\ldots	\cdots	\cdots	\cdots	*'
ϵ_{1}	178.00	825.05	248.62	84:50	21774	00.22	$245 \cdot 41$	\ldots	*.....*	\cdots	\cdots	\cdots	-••	\cdots
$\mathbf{R}_{\mathbf{2}}$	2.851	6.240	1763	\cdots	\cdots	\cdots	0-269	1'378	0898	$0 \cdot 487$	0.440	\cdots	'.'	'*	0.18
ϵ_{93}	108'60	67.81	78.55	\cdots	279.85	67'48	200'70	183'30	273'70	-•'	'.'	**	347'22
\mathbf{R}_{3}	0.094"	\cdots	\ldots	\cdots	\cdots	\cdots	\cdots	..	\cdots
ϵ_{3}	$\cdots \cdot \cdot$	$283 \cdot 81$	\cdots	* \quad...	\cdots	\cdots	*.'*'*	...	\cdots	\cdots	...
H_{4}	0×005	0'275	\cdots	'....'	. ${ }^{\prime} \cdot$. ${ }^{\text {a }}$	\cdots'	*...]	\cdots	.'.	\cdots	0.280	\cdots
ϵ_{4}	146.81	56'06	\ldots	\cdots	\cdots''	\cdots	\cdots	87.86	\cdots
$\mathbf{R}_{\mathbf{8}}$	0.022	0.07	\cdots	\cdots	\cdots	'..'•'	...'.'	$\cdots \cdot{ }^{\prime}$ $\cdot 1$.'	...	\cdots	\cdots
ϵ_{0}	221'61	250.91	'..'•'	\cdots	\cdots	\cdots	\cdots	".'.]	\ldots	' ${ }^{\prime}$	' ${ }^{\prime}$. ${ }^{\prime}$	'"
R_{8}	0.000	0.008'	\cdots	\cdots	\cdots	*...'	\cdots	\cdots'	$\cdots \cdots$	\cdots	\cdots	'.'	\cdots
ϵ_{8}	209-25	27874	...'.'	\cdots	'"."	*...'	….'	\cdots	\cdots	*'

Long-Period Tides.

Nil.

The value of the mean level of the sea (A_{0}) above the zero of the gauge is found to be 13.59 feet.

The amplitude of the main solar tide (R_{2} of \mathbf{S}) is 2.85 feet, which is about twice the amount at Moulmein, and is larger than has been found at either Rangoon or Elephant Point.

The amplitude of the main lunar tide is 6.25 feet, whioh is also the highest yet obtained at any Burman port.

The proportion between the two main tides is $0 \cdot 456$, which is larger than has been found before in Burma, and approaches nearly to the theoretionl value.

Of the two lunar elliptic semi-diurnal tides, the smaller (L) hes a proportion to the main tide about 50 per cent larger than assigned by theory, but only about half the value found at Elophant Point, Moulmein, or Rangoon.

The larger (\mathbf{N}) is not very much greater in proportion to the main tide than the theoretical value, being 0.221 against 0.192 ; it is sliglatly less than at Elephant Point

With regard to the evectional semi-diurnal tides, the emaller (λ) is nine times greater than theory gives, but agrees with the Moulmein value.

The larger (ν) is not quite double the theoretical value, and also ngrees with the mean value at Moulmein.

The variational tide (μ) is more than thrice as great as it should be aocording to theory, The luni-solar declinational semi-diurnal tide (K_{2} of K) is very large, being 28 per cent of the main tide, which is by far the largest value yet found at any Indian port.

The luni-solar compound semi-diurnal agrees well in value with the value found at Moulmein.

As has been found at all the Burman stations, the diurual tides are very small at Amberst, their total amount being only 28 per cent of tho main tide, whioh is exactly the value found at Elephant Yoint, and slightly greater than at Moulmein and Ragoon, where they amounted to 25 per cent.

The main diurnal tide (R_{1} of K) is 11 per cent of the main tide, whioh is the same proportion as found at all the Burman ports

The solar diurnal tide has a large value, being 7 por cent of the main tide-a proportion only equalled at Beypore and Paumben.

The lunar diurual tide is quite insignificant.
The proportion of P to O falls within the theoretical limits, that of J aud Q greatly exoeeds, and that of 0 to K is leas than them

The quarter-diurnal tides of 8 and M are respectively 3 per cent and 4 per cent of the main tide; the other over-tides call for no speoial comment.

The long-period tides have not been computed.
The results in this table have been deduced from the observations of eight lunations only, and havo not therefore the same value as the results of a full year.

VALUES OF THE TIDAL CONSTANTS, AMHERST, 1881-82.

The following are the amplitudes and epochs deduced from the 1881-82 observations at Amherst:-

Short-Period Tides.

	s	MI	0	\boldsymbol{K}	\boldsymbol{P}	\boldsymbol{J}	Q	Σ	\boldsymbol{N}	λ	ν	μ	\boldsymbol{R}	T	718	2 SIC
${ }^{\text {a }} 0$	18'974	\cdots	\cdots	\cdots	\cdots''	\cdots	\cdots	\cdots
H_{1}	$0 \cdot 143$	$0 \cdot 037$	$0 \cdot 301$	0662	01108	0.079	0057'	\cdots	\cdots	\cdots	'"	.."	\cdots	\cdots
ϵ_{1}	14863	18•77	$250 \% 20$	67'74	258.07	88.62	241.04	*....	\cdots	\cdots'.	\cdots	...	\cdots	'.'	*'
B_{2}	2.705	0.174	$0 \cdot 771$	\ldots	0.255	1'267	$0 \cdot 284$	$0 \cdot 287$	0.285	0.451	0.81	."	01158
ϵ_{2}	$101 \cdot 22$	65.60	\cdots	64.69	\ldots	.'. ${ }^{\text {a }}$	$287 \cdot 97$	40.16	243'95	205'24	295.003	353.37	222.90	\cdots	30-30
\mathbf{R}_{3}	\cdots	0003'		\cdots	\cdots	\cdots		…'.'	\cdots	'*	\cdots	\cdots
ϵ_{3}	221:92	...'י''	\cdots ${ }^{\text {a }}$	'...'.	...'.	'*'	'..	\ldots	\cdots
\mathbf{R}_{4}	$0 \cdot 118$	$0 \cdot 437$	\ldots	\ldots	\cdots	...'•'		-••	..'	0412	...
ϵ_{4}	102'23	47:16	\ldots	\ldots	\cdots	-...'•	\cdots	\ldots	\ldots	.	77.90	\cdots
\mathbf{R}_{0}	$0 \cdot 004$	0.158'.	\cdots	\cdots	. \cdot $\cdot 1$.	\cdots	\ldots	\cdots	...	*.	\cdots
ϵ_{0}	221.06	242.3'	\cdots'	\ldots	\cdots'	...	\cdots	...	-••
R_{8}	0.000	0.015	\cdots	\cdots	..	\ldots	\ldots	\cdots	\cdots	...	\cdots	\cdots	\cdots
$\epsilon_{\text {g }}$	848'10	230'03	\ldots	\ldots	\cdots	..	\cdots	-

Long-Period Tides.

Lunar monthiy	tide	...		$R=0.160$	$\epsilon=43^{\circ} \cdot 45$
fortnightly	"	\ldots	...	$R=0.054$	$=2911^{0.89}$
Luni-solar ,	"	\cdots	...	$R=0.081$	$\varepsilon=78{ }^{\circ} \cdot 37$
Solar annual	"	$R=0.63 \mathrm{~s}$	$\epsilon=149^{\circ} 83$
semi-annual	"	...		$R=0.188$	$\varepsilon=138^{\circ} 72$

The value of the mean level of the sen (A_{o}) above the level of the zero of the gauge is 13.974 feet ; the incomplete year of 1880 -81 gave it $13 \cdot 591$.

The main solnr aud lunar tides agree well, both in amplitude and epooh, with last year's values ; the amplitudes in both cases being slightly in defeot.

The proportion between the two main tides is less than in the previous year, being 0.438 ngainst 0.456 ; theory giving 1.476 . This value is almost identical with that found at Dublat and False Point, and is rather greater than at Elephant Point.

The lesser lunar elliptio semi-diurnal tide (I) is identioal in proportional value with the result obtnined last year, about 50 per cent higher than the theoretical value.

The larger component (N) is n little smaller than last year, and approaohes very nearly to the theoretical value, being 0.205 ngainet $0 \cdot 192$

Of the evectional semi. diurnal tides, the smaller (λ) is somewhat less than the value of the provious year, but is still between six and seven times the theoretion value. The menu of the two years ngrees well with the mean values obtained at Moulmein and Rangoon ; but is lower than at Dublat and Elephant Point, and muoh higher than at False Point.

The larger oomponent ($\boldsymbol{\nu}$) is also less than the last year's ralue, and approaohes nearer to the theoretical value; the mean of the two yenrs ngrees with the Dublat ralue, and is less than at Elephant Point and False Point.

The variational semi-diurnal tide (μ) has a proportional value this year not muoh greater than half what was obtained last yenr, and is about twice the theoretical proportion.

The solar elliptic semi-diurnal tides (R and T) have been deduced here for the first time this year (two years' observations being necossary). They both appear to be extrenuely large, R being is times the theoretical value and tbree times greater than bas yet been found at any Indian port; whilst T is five times the theoretical value and twice as great as any value at any other port. These tides have not as yet been deduoed for any other estuary port.

The luni-solar declinational semi-diurnal tide (R_{e} of K), which last year showed an abnormally high proportional value, has this year a proportional value neurly identioal with theory, being $0 \cdot 125$ ngainst $0 \cdot 127$.

The luni-solar compound semi-diurnal tide (2SM) is nearly the same as last yoar. Its proportional value agrees well with that of Dublat, but is much higher than at Elephant or False Point.

The diurnal tides, the sum of which last year only amounted to 28 per cent of the main tide, are this year ouly 24 per oent. Sll the several tides are nearly the same as last year, the reduction being in the solar diurnal tide, whioh last year reached the large proportion of 7 per cent of the main tide, and is this year only 2 per cent.

The proportions of P to O and J to Q are greater than theory gives, whilst that of O to K is less.

With regard to the over-tides of S and M, the quarter-diurnal of S is 4 per cont of the main tide, whilst that of M is 7 por cent, and R_{0} of M is $2 \frac{1}{2}$ per cent. At Elephant Point it is $3 \frac{1}{3}$ per cent.

The quarter-diurnal Helmholtz's tide (R_{4} of MS) is nearly 5 per cent of the sum of the two main tides.

The long-period tides at Amherst are all small, being the smallest in proportion to the main tides that have been found in the Bay of Bengal. Their total is only 18 per cent of the main lunar tide, agreeing iu this most nearly with Port Blair, where they are 19 per cent. At Elephant Point and Dublat they are 25 per cont.

The solar annual is 10 per cent of the main tide. The epoch of its maximum effect is about the 2 Lst August, whioh is the same time as has been found at Rangoon, Elephant F'oint, and Moulmein.

The solar semi-annual is only 3 per oent of the main tide. Its epochs are the lst June and lat December.

VALUES OF THE TIDAL CONSTANTS, PORT BLAIR, 1881-82.

The following are the amplitudes and epochs deduced from the 1881-82 observations at Port Blair:-

Short-Period Tides.

	s	M	0	\boldsymbol{K}	\boldsymbol{P}	J	Q	L	N	λ	ν	μ	\boldsymbol{R}	T	MS	28.4
\mathbf{A}_{0}	4	\ldots	\ldots	\ldots*'	\cdots'	'. ${ }^{\prime}$	\cdots	\cdots	\cdots	"'
\mathbf{R}_{1}	0.018	0012	0.150	0.389	$0 \cdot 137$	0.020	00020	'....'	'....'	*..."'.	'.	\cdots	...	'"
ϵ_{1}	34.84	1.69	22546	48.38	23679	12\%28	10277	*....	*....	\ldots	"...'	"*	\cdots	\cdots	**
$\mathbf{R}_{\underline{2}}$	0078	2.03a	\ldots	$0 \cdot 274$'	0.000	0307	0.047	0.130	0.091	0'020	0000	...	0020
ϵ_{z}	31369	278.38	\ldots	200'57	\ldots	\ldots	8.1.78	270.08	129.00	$252 \cdot 41$	20300	67.08	31'74	\ldots	170'38
\mathbf{R}_{g}		$0 \cdot 011$	*.....	\ldots	$\cdots \cdot \cdot$	\cdots	\ldots'	'...."	\cdots	..	\cdots	\cdots
ϵ_{3}		8117		\cdots	\cdots	\cdots	\cdots	...''	' ${ }^{\prime}$	\ldots	\cdots	...
\mathbf{R}_{\bullet}	0.001	0011	\ldots	\cdots	\cdots	\cdots	0.010	\cdots
ϵ_{4}	85'60	12412	\ldots	\ldots	'...'.	*...1.	\cdots	\cdots	\cdots	204:37	\ldots
\mathbf{R}_{6}	0.009	$0 \cdot 002$	\cdots	...	\cdots'	\cdots	$\cdots \cdot \cdot$	\cdots'	\ldots	\cdots	\ldots	\cdots	\cdots
ϵ_{0}	9853	$200 \cdot 30$	'...'	\ldots	\ldots	'.....	\cdots	\cdots	\cdots	\cdots	. ${ }^{\prime}$
\mathbf{R}_{9}	0.002	$0 \cdot 002$	\ldots	..'.'.	\cdots	\ldots	\ldots	\cdots	\ldots	\ldots	'*
$\epsilon_{\text {A }}$	37-61	61'93	\ldots	\ldots \cdot	\cdots	'*	\cdots	'"	\cdots

Long.Periort Tides.

Lunar monthly	tide	...		$R=0.018$	$\epsilon=25^{\circ} \cdot 71$
fortuightly	\cdots	$\boldsymbol{R}=0.061$	$\epsilon=351^{\circ} \cdot 00$
Luai-solar	"	$R=0.007$	$6^{\circ} 26$
Bolar annual	,	$R=0.062$	$\epsilon=132^{\circ} .87$
semi-annual	"			$\boldsymbol{R}=0.134$	$\epsilon=196^{\circ} 96$

The value of the mean level of the sea $\left(\mathbf{~}_{0}\right)$ above the zero of the gauge is rather less than last year, being $4 \cdot 718$ ngainst 4.792 .

The value of the amplitudes of the main tides of S and M is almost identical with what was found last year.

The proportion between the main tides is again very nearly the theoretical one, being 0.480 against 0.476 given by theory, the mean of the two years giving exaotly the theoretical proportion.

The proportion between the smaller lunar elliptio semi-diurnal tide (\mathbf{R}_{2} of L$)$ and the main tide is not so close to theory as it was last year, being 044 against 035 ; theory giving 027 .

The larger lunar elliptic tide (\mathbf{R}_{2} of N) is elmost exactly the theoretical value, its proportion being $0 \cdot 195$; theory giving 192 .

With regard to the two lunar perturbational tides (λ and ν), they are much the same as last year; λ being about three times as great in proportion to the main tide as theory would assign, and ν nearly twice as great.

The variational semi-diurnal tide (μ) is the same as last year, and twice as great as the theoretical value.

The solar elliptis semi-diurnal tides (R and T) have been deduced for the first time this year (two years' observations being uecessary).

With regard to the smaller component (R), ite proportion to the main tide is 2d times the theoretioal value, which agrees well with what has been found at Madras and Viangapatam ; whilst the larger component (T) is about twice the theoretical value, which is what was found at Madras, but is considerably greater than at Vizagapatam.

The luni-solar declinational semi-diurnal tide (R_{1} of K) approaches very nearly to the theoretioal value, being 0.134 against 0.127 ; whilst at Madras, Vizagapatam, and False Point the values are rather less than theory givee.

The luni-solar compound semi-diurnal tide (2SM) is the enme as last year, and has a proportion to the main tide about half what wns found nt Madras, and nearly the same as at Vizagapatam and False Point. As was found last year, the điurnal tides bear a very small proportion to the main lunar tide.

The solar declinational diurnal tide (R, of P) is the only one which has a slightly larger proportion than was found last year.

The lunar elliptic diurnal (Q) and the luaar declinational diurnal (O) are the same as last year, whilst the solar diurnal (R, of S), the luni-solar declinational (\mathbf{R}_{1}, of K), the lunar diurnal (\mathbf{R}, of M), and the lunar elliptio diurnal (R, of J), are less than last year.

The proportious of P to O, J to Q, and O to K, differ greatly from the values assigned by theory; the two former being much greater, and the last one much less. As was found last year, the lunar and solar over-tides are insiguificant.

There is a close coincidence between the amplitudes of the short-period tides evaluated from the two years' observations, as might be expected from the position of Port Blair as an ocean port; and from this cause also the proportions of the various tides to the main lunar tide are more generally agresable to theory than is usually found.

With regard to the long-period tides, the luuar monthly is nearly the same as last year, and insignificant in amount.

The lunar fortaightly has a value of 3 per oent of the main tide, which is the same as was found last year. The luni-solar fortnightly is hardly apprecinble.

In the solar annual tide there is a considerable difference both in amplitude and epooh from the values of last year. This year it is only 3 per cent of the main tide, which is nearly the smallest value whioh has ever been obtained for an Indian port, the only values at all approaching to it being at Kurrachee and Bombay. Its time of maximum effect is the 4th August. Last year it was early in September.

With regard to the solar semi-annuai tide, its proportion to the main tide is $\cdot 066$, which is about one-Gfth what was found at Madras and Vizagapatam, and agrees nearly with the proportion at Dublat and Elephnnt Point. Its times of masimum are about the end of June and Decomber, or about a fortaight later than was found last year

Memorandum by Mrajor M. W. Rogers, R.E., Deputy Superintendent, 4 th grade, on the earthquake of the 31st December 1881 ant the great sea-waves resulting therefrom, as shown on the diagrams of the tidal observatories int the Bay of Bengal.
Port Blair mean time is used throughout. Latitude $11^{\circ} 40^{\prime \prime} 30^{\prime \prime}$ N., longitude $92^{\circ} 45^{\prime}$ E. The tide-wave can be traced olearly on the dingrams at seven tidal stations, viz. Port Blair, Paumben, Madras, Negapatam, Vizagapatam, False Point, Dublat, and may be suspected on an eighth, viz. Diamond Marbour, on the Hooghly.

At Port Blair, in the Andamnn Islands, the first indication of the shock is at $7 \mathrm{~h} .42 \mathrm{~m} . \mathrm{A}, \mathrm{m}$., and this, I am inclined to think, is due to the earth-wove, or rather to the forced sea-wave, whioh is formed when the earth-wave gets into shallow water; for the tidal ourvo goes on undisturbed for some 30 minutes nfterwards, and it is not until 8 ll . 10 m . A.m that the first wave is recorded, followed by others in succession at about 15 minutes' interval, with a height of about 3 feet from erest to hollow. The dingram is unfortunately incomplete, for the penoil of the gauge, in its violeut oscillations, caught in and tore the paper of the diagram, and the clerk, being frightened, stopped the driving clock, which was not started again until l p.m. Thare is evidence that the wnves continued to follow one another with great regularity until about 3 r.m., when they became of a much smaller size, but are traceable until 9 r.m. Small shocks were felt on Ross Island all that day, and the violence of the great shock, which damaged the barracke and did other injury, seems to indicate that the centre of impulso could not have been far from the Andamens.

At Madras there is a trustworthy time for the advent of the earth-wave ; it is obtained from the 'Telegraph Office, where the shools affeoted the recording instruments. It occurred at 7 h .56 m . A.M (7 h .5 m . 45 s . Madras time), whilst the great sea-wave reached at 10h. 10m. A.m., and continued until 7 r.m., with intervals of about an hour from crest to crest, and the influenee of the disturbance can be traoed until 10 p.n.

At Negapatam the first and largest wave came in at 10 h .10 m . A.m., with a height of nenrly four feet from er crst to hollow, and it was succeeded by a series at about half-hour intervale, which oontinued until miduight. Judging from the diagrams, the sea at this port seens to have been more affocted by the eartbquake than at any other.

At Paumben the first wave was registered at llh. 35 m . A.m., and was followed until midnight by a succession of waves with about two hours' interval between them.

At Vizaganpatam the first wave was recorded at 10 h .43 m . A.m., and from that time there wap a successicn of small waves at irregular intervals until past midnight.

At False Point the diagram shows the passage of the earth-wave or forced sea-wnve at 7h. 54 m . A.m. The pencil seems to have bern moved rapidly up and down a small quantity for some mioutes, and the clerk notes that the building was shaken by an earthqualse. The soawave here is hardly indicated. Its first appearance is at 11h. 12m. A.m., and there is a second one at 1 p.m.

At Dublat the wave appears to have arrived at 1 p.m., and a second, one hour afterwards ; there is also an indication of a third at 3 p.m.

At Dinmond Harbour the indications of the wave are untrustworthy, and very slight. If felt nt all, it was at about 3 ғ.м.

Looking over the data at our disposal, I find that the shock, i.e. the parth-wave, was recorded us felt at Madras, Coconadn, Vizngapatam, Gopálpur, False Point, Calcutta, Port Blair, and Kisseraing, an island in the Mergui Archipelago in latitude $11^{\circ} 39^{\prime} \mathrm{N}$. , longitude $90^{\circ} 31^{\prime}$ E., and also on buard a ship, The Commonvealth, in latitude $5^{\circ} 55^{\prime}$ N., longitude $92^{\circ} 49^{\prime} \mathrm{E}$.

Of these the times of the shock at Madras, False Point, and Kisseraing were probably recorded oorrectly within a minute. Madras was recorded in the Telograph Office, and given to the nearest second; False Point was recorded on the tidal diagram, and also by Mr. Rendell, of the Survey, who was leveling a fer miles from Falso Point, and whose recorded notice of the time at which he felt the shook agrees to the minute with the tide gauge record.

At Kisseraing I was observing at the trigonometrioal station there with a $24^{\prime \prime}$ theodolite, and saw the earthquake before feeling it; the heliotrope (distant some 15 miles) to which I was observing appearing to rise aud fall in the field of the telcscope, and the levels of the instrument being violently agitated. The motion was, to my feeling, barely perceptible, but the recorder and other men with me said that they felt it distinctly. It was not, however, felt by e日veral of the officers of the Indian Marine, who were on the island that morning, thus proving that it was not a severe shook, though plaiuly noticenble by instrumental means.

At Madras, False Point, and Kisseraing, the earth-wave was felt at about the same minute-ih. 55 m . A.s. On the hypothesis that the strata between them and the oentre of impulse is homogeneous, this centre was equidistant from them, and would be at a spot in the Bay of Bengal in latitude $11^{\circ} 55^{\prime} \mathrm{N}$. and longitude $89^{\circ} 33^{\prime} \mathrm{E}$.

There is no reliable evidence on the subject of the velocity of earth-waves; it varies with the nature of the strata through which it passes and the violenoe of the initial shook, aud aleo on the depth of the locus of the centre of impulse.

If we assume that the contre of impluse in this case was at the point mentioned, it will be found that it, and Port Bloir and Kisseraing, are almost in a straight line. The distance from Port Blair to Kisseraing is 400 miles; and if we assume that the mark on the diagram at the former place $n t 7 \mathrm{~h} .42 \mathrm{~m}$. was due to the earth-wave, it took 13 minates to trivel 400 miles, which gives a rate of 30 miles per minute-a velocity which I find mentioned in books on the eubjeot as probable under favourable circumstances. With this velocity the ceutral slock should hiave takeu place at 7 h .35 m ., the distance to Madras, ©co., being a little over 600 miles. The distance from this assumed centre of impulse to Port Blair is 218 miles, which would take seven minutes in transit and cause the slook to be felt thore at 7 h .42 m .

This fixing of the locality of the centre is of course merely hypothetical: the whole of the region is volcanic. Narcondam and Barren Island, to the east of the Andamans, are volcanoes, the latter having been in eruption as lnte as 1792 ; the only thing oertaiu is that the centrs must bave been not far from Port Blair and Car-Nioobar, nad about equidistnut from the whole of the enst coast of the Bay of Bengal, and also it must Lave been subaquenus in order to have cansed such dietinct tidal waves.

All the times of the eartl-wave reaching planes on the west side of the Bay agree very fairly; but in all the oases except those mentioned, the times are not likely to be sufficiently accurate to aid in the investigation.

The foroe of the earthquake was grent at Port Blair, where it did damage to the barracks, \&.., nad at the Island of Car-Nicobar it was felt severely, the huts of the natives aud many of their palm-trees being thrown down.

Several slight shocks were felt at Port Blair on the same and the two succeeding days, and The Commonwealth, which, as mentioned, felt the shock of the 31st, felt three shooks
again oo the lst off the Island of Car-Nicobar. All this points to there having been considerable subterranean disturbances in those regions at that time.

I can find no trustworthy indieation of the direction of the motion as felt at the various places. At Madras there are three estimations of it : one north to south, and two others north-east to south-west; whilst the clerk of the tidal observatory says that there were two slocks-the first north to south and the seoond east to west. Mr. lendell, at False Point, states that the direction appeared to him to be from north-west to south-east, whilet a person at Calcutta saye that it appeared to go from west to east. At Kisseraing Ialand the mution was so slight that I could not decide on any direction. My first impression was that it cone from the west, but after oareful oonsideration I could not decide suffioiently satisfactorily to place it on reoord.

The great tide wave, of which we have full evidence on the tidal diagrams, was felt, as was to be expected, a considerable time after the slock, varying with the distancu and other oauses, such as wind and its velucity of translation, which again varies with the depth of the water at any given pciat.

The wave reaobed Port Blair first at 8 b .10 m , or, if we assume tie foregeing idea of the locality of the centre of disturbance and time of the original slinock, in 35 minutes, with an average rate of 6.2 miles per minute. It reached Madras and Negapatam at 10h. 10m., two hours later than Port Blair. These places are 614 and 640 miles from the assumed oentre, and would give a velooity of 4 miles per minute.

At Pauraben the first wave came in at 1 lh . 3 äm., or more than one hour later than Negapatam; but owing to the intervening land and straits, I do not think any estimate of velocity can be made. At Vizagapatam the wave reached at 10 h . 48 m ., about 40 minutes later than Madras, giving a velocity of 2.9 miles per minute. At False Poiut the wave reaohed at 11 l .12 m ., or 24 minutes later than at Vizagapatam, giviug the same velocity of 2.9 miles per minute. The wave reaoled Dublat at I r.M., giving a velocity of a little over two miles per minute.

The directiou of the wind all day was N.N.E., which would tend to reduce the velocity of the wave on its road to the northern ports.

Extract from the Narrative Report, dated 22nd December 1882, of Lieutenant-Colonel W. M. Campiele, R.E., Deputy Superintendent, 2nd grate, in charge No. 1 Astronomical Party.
I arrived at Mussoorie, on return from furlough to Europe, on 15 th May 1882. and took charge of No. 1 Astronomical Party in the place of Major Heaviside, who had proceeded on furlough. Major Strahan havius writteu a general report regarding the longitude operations carried out duriug season 1881-8\% by the two Astronomical partios combined, I nead not here allude to the novements of No. 1 party, under Major Heaviside, in the field.

I found the work in a fairly forward state as regards the reduction of the observations, and it was steadily proceeded with until completed in October.

A large portion of my own time was emploged in going through the reductions of the previous seanon's work, viz. 1880-81, with the hope of findivg some source of error, the correotion of which would improve the aconrdance of the results obtained. In this I was unsuocessful, and my investigations throw no light on the origin of the disorepancies, the magnitude of some of whioh had caused me muoh surprise and some uneasiness.

I did make some minute alterations in the method of computing the level corrections applied to the star observations, and, curiously enough these in almost every caso increased the olosing orror of the triangular oircuits, which seems to indicate that a coincidenoe withiu $0^{*} 01$, or $0^{\circ} 02$, in the values of an arc of longitude obtaiued by direat measurement and by the sum of two other aros is very fortuitous. Muoh of my time was also occupied in supervising the printing of the results of $1880-81$, which was carried ou, and nearly completed, during the recess.

As regards the results obtnined from the observations of 1881-8?, these are, I regret to say, very unsatisfactury. The discrepancies between the individual values of each aro are generally larger than in former sonsons, and two out of thrse cirouit errors obtained are of almost incredible magnitude.

The observations takon for collimation throughont the senson showed an anmount of inatability in that adjustment in the case of both telescopes, hut m"re partioularly witl
regard to No. 2, which was used by Major Stralanin, which has regard to No. 2, which was used by Major Stralian, which has caused me great ansiety as to the results from the tine when I took charge of the reduotions; but the event has far exceeded my worst antioipatious.

When the bad results becane apparent, suspicion was first thrown on the methods of observation and reduction; but the work has been gone through without nny success in detecting mistrkes of procedure, and all the evideuce points out that the instruments are to blamo. The instability of the collimation adjuctmeut, already renarked upon, night perhaps be hold sufficient to ncoount for tho errors foumd, were it not for the fact thit the system of reversing the instruments, Which has always been carried out, must eliminate from the resulting value of ench aro the effects of nll instrumental dofects whioh are coustant ; and it is difficult to imagine iuoonstancy, in nny hypothetical source of error, sulficient to leave such gross discrepanies in spito of the teudoucy of the ssstem to cancel its olfects.

The inoonstanoy of oollimation pointed to the conclusion that the fault in telescope No. 2, whioh was suocessfully treated at Madras in 1875, had renppeared in that telescope, while No. l was affeoted to some degree by a similar failing; but the collimation observations recorded during the sensou do not suffice to enable me to speak with absolute confidence on this point. During the recess both the telescopes were examined by M_{r}. Boltou, who reported that there was great weakuess of both in the suspected parts, viz. the junotion of the object-kalf of the telesoope tube with the flange, by whioh it is attached to the axis. These parts were acoordingly thoroughly streugthened by the addition of internal collars and new soldering, and the same treatment was applied to the oorresponding parts of the eye-end tubes. I namglad to say that both instruments have since then given satisfactory evidence of stability in the collimation adjustment, and I believe they are now in a better condition than they have been at any former time.

In case of the reappearance of any such defects as have on former occasions been found in these telesoopes, it may be advisable to record here my experience in the matter, whioh, as regards these individual instruments, is greater than that of any one else.

In the first place, I consider that all observatious for oollimation should be oarofully oarried out in a way oaloulated to show up any instability which may exist in that adjustment, and so long as these observations offord no evidence of such instability the telescope may be used with confidence, but if nny symptoms of inconstancy of the oollimation adjustment should appear, suspicion should be at once aroused.

The most orucial test of stability in this respeot of whioh I am aware is to obtain two determinations of oollimation error ; one from readings of horizontal collimators taken after the iustrument has been pointed towards the zenith, and the other from similar readings after pointing towards the nadir. A slight difference between these two values may always be expected, as they are obtaiued after subjecting the telescope to two sets of strains of exactly opposite effects, and no instrument enn be absolutely perfect and free from yield to such strains. The amount of differenco in this respect whioh slopuld be looked upon as sufficient to condemn the telescope must remain a matter of judgment and experience. If repeated exporimente should show that, although somewhat large-say three divisions of the micrometer $=1$ " it is very oonstant, the telesoope may be continued in use, beoause the effects of all constant errors can be eliminated by reversing the telescope in its \mathbf{Y} 's ; but as soon as irregularity in the amount, or sign, of the difference occurs in any marked degree, the teloscope lad better be carefully examined, and should remedies practicable on the spot-such as serewing the parts together more carefully, which I have known to be efficacious on one occasion-prove ivsufficient, it must be sent to an instrument-maker for repairs.

I would very strongly urge that every determination of collimation error taken during observations should show two distinct values obtained as above doscribed, one for the zenith and the other for the nadir position, and that, if there should be a sensible constaut differenoe between them, the former should be employed for correcting the transits of stars. and the latter should be used in combination with the mercury observatious for finding the dislevelment of the instrument.

In order to afford the means of testing the constancy of the line of collimation in all positions of the telesoope, I designed a frame to carry a small reflector permanently iu front of the objeot glass, so that, by ueing a Bohnenberger eye-piece, a reflection of the wires might be observed in any position.

This reflector must not be large enough to interfere with the ordinary use of the telesoope for star and oollimation observations, beonuse, unless it can bo kept pormaneotly in position on the telescope, its chief advantage will be lost, and from oxperiments nlrendy mado I fear that a refleotor of suitable size may not give sufficient light to afford an image fit for observation.

If a larger reflector were employed, and only applied to the telescope at certain times, when wanted for use, the difficulty of monnting and adjusting it seourely would be immensely increased; and it need hardly be remarked that the slightest uncertainty in this respeot would vitiate the whole principle, because if the reflector be subject to any accidental change of plane, relatively to that of the object glass, it will give false and mislending results.

On this point I feel considerable doubt as to the success of the contrivavce, even in the case of n emall reflector permanently in position; but as iu that case its rendings could be oompared with those of the collimators, and of the meroury reflections, such ohanges would probably be detected.

If euch an ndjunct oould be perfected, it would be a valuable addition to nn astronomical instrument. even more so in the oase of one for observing altitudes which is directly nffected by flexure in a verticnl plange than in the oase of a purely transit telescope, where suoh flexure is of no consequence, except in its indirect effects, which may take place in other plaues.

Extraft from the Narrative Report of Mason G. Strahan, R.E., Drputy Superintendent, 2nd grade, in charge No. 2 Astronomical Party, for the scason ending 31st October 1882.
In arcorlance wilh instructions reeeived from you I proceeded to Agra, after having made over oharge of the Mybore Topographical Survey to Major Thuillier, to meet LientennatColonel Camphell and Major Heaviside there, from the former of whom I was to receive charge of the instruments, office recorde, and camp equipment of No. 2 Astronomical party,
and to gain some further insight into the details of the longitude work before his departure on furlough. I arrived in Agra on October 27th, and spent twenty-seven days in examination of, and petty repairs to, the iustruments and feld equipment of the party, aud some prelimiaary practice with the apparatus, including the determination of personal equation betweeu myself and Major Henvieide. The charge of the party was made over to me by Culonel Campbell on November 4th.

On November 20th Major Heaviside started fur Fyzabel to commence the measurement of the first are, Fyzabad-Agra.
'I'he aros measured during the season were as follows :-

1. Fyzabad Agra
2. Fyzabad Jubbulpore
3. Hazaribagh Fyzabad
4. Hazaribagh Jubbulpore
5. Calcutia Hazaribagh
6. Jalpaigori Hazaribagh
7. Jalpaigori Calcutte

Major Heaviside Strahan.
Major Heaviside Strahan.
Major Strahan
(י. Heaviside.
Major Strahan
Mujor Heaviside.
Major Heavisid
Major Heaviside
Straban.
Major Heaviside
" Strahan.

Commenced,
... November 25th ... December 2nd,
... December 12th ... December 20th.
... Janaary th ... January 10th.
... January 19th ... January 26th.
... February 8th ... February 16th.
... February 2óth ... March 6th.
... Marclı 17th ... April 6th.

Observations for personal equation were taken, besides those at Agra already mentioned, at Fyzabed, Hazaribagh, and Jalpaigori, the results of the four observations being as follows:-

$$
\text { By Norllı Stars. } \quad \text { By South Stars. }
$$

	$S-H=-0.014$ prob. error $\pm .013$		$\mathrm{S}-\mathrm{H}=-0.005$ prob. error ± 013.		
Fyzabad in December...	,	± 010	$\mathrm{S}-\mathrm{H}=+0.037$	''	.
azaribagh in January $\mathrm{S}-\mathrm{H}=-0.03$		$\pm .006$	-0.015	,	
Jalpaigori in March ... S-H $=-0.006$		$\pm \cdot 007$	$\mathrm{S}-\mathrm{H}=+0.027$		$\pm \cdot 006$

The process by which these values were obtained was the usual one in which one observer notes the transit of a star over the first 10 wires, and the other observer over the last 10; reduotion to the central wire then gives the equation at once. About 80 stars were taken at each place for this purpose. 'The oapital letters S.H. refer to the observer's initials. For the first two arcs, the mean of the November and December values was used ; for the third and fourth, the mean of the December and January values; and the fifth, sixth, and seventh arcs, the mean of the January and March values.

It occurred to me during the work that there might possibly be an eye equation depending on whether the right or left eye was used for observing, and while at Hazaribagh I took divided transits of about 80 stars to ascertain this point. The reduction of these shows suoh an equation to be inappreciable, but it brought to light most unmistakably the fact that when a star is observed over a number of wires (10 or 20) there is a marked tendenes to anticipate the transit over the latter half of them, i.e. that the mean of the former half, when reduced to the oentral wire, gives a later epoch than the mean of the latter half. A little consideration will show that the effects of this peculiarity are taken into account when the differences of transits by the two observers are taken out and oorrected by the application to them of their relative personal equation; for it may be oonsidered as a persoual error pecular to the individual in estimating the time of a transit. The peculiarity is brought into play exactly in a similar manner in the observations for personal equation and in star transits, and its annihilation would be theoretically perfect if the same number of wires were observed in both processes. 'This is not strictly the case, as ten or twelve are used in the former nod any number from one to fifteen (ifteen in a large majnrity) in the lattor. The whole effect is however so small, and wes moreover recognized only by the observation of twenty wiros, that this departure from theoretical acouracy may be considered as quite immaterial.

There is little to notice in the way of novelty in the procedure during the past year. Oue change that was discussed aud sanctioned at Agra duriug your visit there in November was made, viz. an alteration in the system of changing pivots. Up to that time the pivota had always been similarly placod at both stations, either both I. P. E. or I. P W. (the initials I. P stand for illuminated pivot,, the change from one to the other being made alter the first half of the observations was oompleted. The new method (which was applied to alternate ares only, viz. the 1st, 3rd, 5th, and 7 th) consists in placing the pivots dissimilarly, i.e. I. P. E. at one station and I. P. W. at the other, both being changed as before after the first half of the observations. Theoretically one system caucels pivot error as effeotually as the other, but it was hoped that some light might be thrown on some supposed pivot irregularities by this process. The number of observations, however, is not great enough for the purpose, besides the effects of auy such irregularities are masked by other errors to be noticed below.

The direot comparison of olooks and deduction of the differonce of thair errors by the observation of what we have termed "looal gronps" (in contradistinction to " longitude groups," and so called on aceount of the looal olocks being used by both observers) was never omitted, so that on every night there exist two separate methods of determining the difference of longitude; the one, by noting the time elapsed during the passage of a group of stars (the same for both observers) from the meridian of the eastern station to that of the western, by eacl olook alternately, and the other, by the direct comparison of olooks alluded to abore. The agreement of the results of two methods is remarkably close, the maan difference being only 012 seo. Both systems had been in use previously, but the latter had never been made an integral part of each night's programme before this season, or rather it would be more oorreot to sny that the deduotions of the latter had never been fully worked out for each night, because of so muoh extra labour being neesssary for that purpose. The importanoe, however, of thus seouring two partially independent values of each aro was so strongly urged by Lieuteunat-Culunel Campbell that means were taken to secure them, and experienoe has shown that the additional labour of observing and reducing caused thereby is not so great as was anticipated.

It is with much regret that I have to report that, notwithstanding all the oare that was bestowed on the work down to the minutest detail, the result of the season's work, as tested by the closing of the oircuits, is not satisfaotory.

In investigating the cause of these cironit errors all possible sources of error esceeding twenty in number were eaoh discussed one by one, and a brief ressume of the results was submitted to you shortly afterthese diserepanoies first came to light. The cause has been proved quite conclusively to my own mind to lie in unoertain flesure or shake of some kind in the telescope tube. This conclusion is almost foroed on one by three separate considerations : first, because systematic reversal of pivots, pens, clocks, \&o., makes it impossible that errors of this kind and amount can have their origin in any other source ; seoond, beoause there is an a priori probability of its being oaused by an imperfection in the tube, as a similar imperfection had been brought to light and remedied in a previous season's work; and thirdly, because there is no security that the line of collimation, whon the telescope is pointed to the zenith, or near it, for the observation of transits, remains in the same relative position to the asis as when the telescope is placed horizontal or pointed to the nadir, as it unavoidably is in collimating and leveling respectively. During the recess both telescopes have been overhauled and the tubes strengthened, and various small ohnuges, merely for the oouvenienoe of the observer, which it is unnecessary to particularize, were made.

The causes of, and remedies for, these instrumental defects have been so minutely considered and disoussed by yourself and Colonel Campbell, with me in person, that it is perbaps unnecessary to enlarge upon them here, and I will only add that the repairs have been tested, as far as possible, by methods which on a previous occasion hare shown similar faults to huve been remedied. Sume slight changes in the routine are to be adopted in future to guard, as far as is possible, agninst suoh faults coming into play again unnoticed. One suggested by Colonel Cumpbell seems to be an excellent safegunrd, and is as follows:In collimating, the telesoope is supposed to begin from the nadir position; it is then to be raised twice to the north collimator and micrometer readings taken (suppose the mean $=\mathrm{P}$). It is then raised to the zenith and twice depressed to the north collimator, giving a mean reading Q. The s:me process is then repeated with the south collimator giving mean readings R and S . Now if the telescope were perfect, the following equations would hold : $\mathrm{P}=\mathrm{Q}$ and $\mathrm{R}=\mathrm{S}$, but practically no instrument can be made so perfect as exactly to fulfil these conditions; but the nearness or otherwise of their fulfilment is a good test, of the stability of the tube. Colonel Campbell then proposes that the value of collimation $\frac{1}{2}(\mathrm{P}+\mathrm{Q}$) should be used when determining the level correotion by mercurial reflection, and $\frac{1}{2}(R+S)$ for computing the correction for collination for the transits of longitude stars. The difference between the two would be quite inappreciable while the instruments were perfectly stable, whereas if they are not, the result would be moro theoretically correct than by using $\frac{1}{9}(P+Q+R+S)$ both for level and for longitude stars as has hitherto been the praotice.

It is proposed also to change pirots each night, and also during the first arc to observe for eight wights iustead of six.

The ebronographic and electricnl parts of the apparatus worked well, with some trifling exceptions, nud seen to admit of no further improvement. Some esperiments were made to ascertaiu huw for the adjustment of the rarious relays and armatures affected the retardntion, but no defnite results were afforded by the observations, except the conclusion that auy eorrections due to this cause were rejectaneous; they remain, however, permanently recorded on the chronograph sheets for future reference if required.

The programme for the season $1882-83$ will commence with the aro JolpaigoriFyznbanl, which will, when completed, be approximately computed. This. with the belp of all three observers, Lieutenant-Colonel Campbell, Mnjor Heavisido, and myself, will probably not take more than two or three days. The aros to be next undertaken will partly depend on the results of this une. Ohittngong-Jalpnigori and Chittngong-Calouttn seem the most desimble, then Calcutta-Fyzalnad rud Calcutta-Jubbulpore, and what time then remains shonld be spent in revision of anme of the ares about Agra to be subsequently decided on. By leaving the western ares to the last, it will be possible to work later in the season, as the weather up-country remnins favouraiole for such observations long after the sky in lengal becomes orercast.

g EOGRAPHICAL COMPILING AND DRAWING BRANCH, SURVETOR-GENERAL'S office, calctita.

Statement showing the nature of the work performed and the progress made from 1 st October 1881 to 30th September 1882.

Mape.	Scalb.	Remaris and Progembe.
	In. Mls.	
India	$1=96$ $=64$	
India (outline map), 4 sheets		Additions, territorin names, \&e. (rom recent surveys), inserted for Engraving Branch.
India (with hills), do.	$1=64$	Hills in brush shading completed.
India (preliminary edition), 6 sheets	$1=32$	Hills completed, and additions made for second isaue.
India of sheets eugraved, Ginal ...	$1=32$	Additions (names-Railways-new materials for Afphnistan, \&c.) for engravers.
Rajputana Agency, 2 sbeets ...	$1=16$	Compilation completed from surveys made up to date.
L'entral Indie Agency, 2 sheets ...	$1=16$	Compilation completed up to date.
Central Provinces, 4 sheets ...	$1=16$	Brasla shading of hills completed on proof sheet for Lithographic Branch.
Bengal, Behar, Orissa, and Chota Nagpore (with hills), 2 sheets.	$1=16$ $1=16$	Railways inserted, names corrected, and marginal lines adjusted. Hill drawing completed for photozincography,
Sketch map of the Hazarajat ...	$1=16$	Hill drawing completed for photozincography.
Puajab, 4 sheets	$1=16$	New compiation, embracing all recent survejs to date.
Nizam's dominions, 2 sheets	$1=16$	Drawing in outline finished, printing of names, de., in progress.
North-Western Provinces (edition of 1875), 4 sheets.	$1=16$	Revised to date.
Berar (Hyderabad Assigned Districts), 1 sheet	$1=8$	Hill draming completed.
Pishin and Sibi \quad ITj 8 ...	$1=8$	Corapilation completed.
Punjnb (edition of 1975), 8 sheets	${ }_{1}^{1}=8$	Revised to date. Ditto.
bengal (edition of 1875), 16 sheets with index.		
Southern Afghanistan, 2 sleets Singho-Kampti counlry, or	$1=8$ $1=16$	
Singhpo-Kampti country, or neutral ground between India and Chinu, 2 sheets.	$1=16$	Prepared for Mr. C. H.L. Lepper. Compiled from various sourees fur reduction to $\frac{1}{2}$ soale.
District Maps.		
Bannu	$=$	Compilation completed.
Dera Ishmail Khan ...		Ditto in progress.
Poshowur ...	$1=4$	Ditto completed.
Dera Glazi Khan ...		Ditto ditto.
Rnipur	$1=4$	
	$1=4$	Extracted from the sheets of the Atlas of India ; re
Goalpara ...	,	ed and completed to date for publication.
Sylhet		
Darrang ...	=	
Kamrup ...	$=$	Extracted from the sheets of the Atlas of India, and in course of completion.
Balagbat ...	$=$	Completed ior publication of second issue of map.
Special Maps.		
District Shahjehnnpore	$1=8$	
Ditto Dehra-Dun ...	$1=8$	Dramn for the Gazetteer, North. Weatern Provinces,
Ditto Terai ${ }^{\text {den }}$	$1=8$	Drat
Dilto Morndabad Indin ...	$1=128$	Completed for Genlogical Suriey.
Do.	$1=128$	Ditto Meteorological Report.
Do.	$1=64$	Showing hot springs ; names ingerted.
North-Western Provinces	$1=32$	Tansecl boundaries and other additions inserted for Census Department.
Dengal and assam	$=64$	Division and district boundaries corrected and brought
Khasia and Garrow Hills Survey, Exiract from Sheet No. 84.	$1=2$	up to date for Census Commissioncr. Hill shading completed for Geological Sarvey.
Charl of the const of India ...		Coast line enlarged to double scale, and names inserted for Postal Depariment.
Punjub (to illustrate Administralion Report for 1881-82.)	$=32$	levised and brought up to date for Punjab Governmיnt.
Lowor Eeypt. (13nsed on E. A. Goujon's nap.)	$1=31565$	Blue prints ourlined, and corrections made from informa. tion supplied by the Quarler-Master-General's Department for reduction to $\frac{1}{4}$ scale.
Supz Camal. (From Charts of the surz Caunl Company, 1876.)		Blue prints oullined, zad names, \&e., typed for reduo. tion to $\frac{2}{3}$ scate.

geographical complling and drawing branch, surveyor-general's office, calcutta.

Sheets of the Atlas of India, 1 inch $=4$ miles.

13 N.E.	Part of Junagarh	Hills dramn and footnotes completed.
$\begin{aligned} & 14 \text { N.E. } \\ & \text { S.E. } \end{aligned}$	Part of Hazara	Compilation on dry-print in progress.
18 N.E.	Part of Bhawalpar native atates	Reduction from recent surveys.
19 S.E.	Part of Rajputana	
$20 \text { N.E. }$	Ditto	Ditto and hill shading by brush.
	Hazara	Comrilation on dry-print in progress.
29	Rawalpindi, \&c.	Additions and large lettering completed.
30	Parts of Gujranwala and Amritsur.	Insertion of railway-station names and minor details.
$31 \underset{\sim}{\text { N.W.E. }}\}$	Part of Bickaneer	
$\left.32 \begin{array}{c} \text { N.W. } \\ \text { N.E. } \end{array}\right\}$	Ditto	\} Rednctions from recent surveys and additions.
35 S.E.	Part of Indore	Hills drawn in brush for engraving.
36 N.W.	Ditto	Reductions from recent surveys.
S.W.	Rajpipla State $\quad \cdots$	Correction of boundaries a
37 N.W.	Ditio and Khandesh	Ditto in progress.
S.E.	Parts of Khandesh	Insertion of boundery (Holkar concession boundary).
$\left.\begin{array}{r} 38 \text { N.W. } \\ \text { S.W. } \end{array}\right\}$	Parts of Nasik, Abmednugur and Poonah.	\} Compilution on dry-print in progress.
N.E.	Part of Hyderabad territory ...	Drawn in outlinc from existing materials.
	Parta of Poonah, ahmednuggur,	\} Reduction from Deccan survey.
48 N.E.	Part of British Gurhwal	Details inserted from new survey of Dehra Dún.
S.E.	Part of Mozuffernugnr, \&c.	Reduction from surve
49 SW .	Parts of Ulwar and Jaipur ...	Additions and details from recent surveys.
NE.	Parts of Delhi	Reductions from recent surveys in progress.
60 N.E. ${ }_{\text {S.E. }}$	Parts of Mrtre, Gurgaon, and Agra	Ditto ditto.
N.W		
54 56	Part of Hyderabad	
56	Parts of Barsi and Naldrug ...	Revision of old work necording to recent surreys from Decean Topographical survey.
$\left.67 \begin{array}{c}\text { N.E. } \\ \text { N.W. } \\ \text { S.W. } \\ \hline\end{array}\right\}$	Parts of Bareilly, Rampur, Budaon, and Moradabad.	\} Heights inserted.
71 SE .	Parts of Mandla and Sconi	Hills drarn in brush for engraving.
76 N.E	Nellore Guntur ...	Original draming received from Superintendent, Madras
78 N.E.	Arcot \quad \%	Hevenue Surrey, examined.
103	Part of Behar	Corrections of the old courses of the Ganges, Gogra, and Gandak rivers.
105	Part of Vizianagram	Hill shading in brush for engraving.
112	Parts of Munghir and Patna ...	Resurveys of the Ganges and Gogra rivers, inserted in outline.
114	Parts of Chota Nagpore and Bengal	Inserting canals.
116	Part of Orissa	Insertion of additional details and revision.
118	Part of Darjeeling	Hill shading.
138 S.W.	Part of Eastera Frontier of Assam.	Additions in sketch work about the Nougyong Lake Patkai range.

Standird shents of the Topographical Branch Survey of Indin, dianou for reproduction.

GEOGRAPHICAL COMPILING AND DRAWING BRANCH, SURVEYOR-GENERAL'S office, calcutta.

Miscrllancous Maps, Tracings, \&sc.

M 4 Pg .	Scalb,	Hemares atid Progriba.
	In. Mls.	
Sndiya Cantonment - ..	$12=1$	Drawn on vellum cloth for reproduction.
Plan of Calcatla	$6=1$	New buildings and names inserted.
Plan of the Sanitarium of Simla ..	$3=1$	Hill shading in vertical completed.
Plone-table sections of the Khandesh and Bombay survey	$1=1$	Revised boundaries inserted.
Chart of the Trianguiation of the Mysore Topographical survey ...	$1=4$	Points plotted, names of stations inserted, revised and corrected, work previously plotted.
Prstal map of Central Indin ${ }_{\text {a }}$	$1=32$	
Map showing aros occupied by Bibari dialect. Lower Provinces ...	"..	India. Insertion of boundary and names for Magistrate of Patna.

Miscellaneous Maps, \&c., concluded.

847 shects of various engraved, lithographed, and photozincographed proofs, examined, corrected, or added to for publication in a complete form for olfice use and for issuc.

WORI DONE BY THE EXAMINING BRANCH FROM lst OCTOBER 1881 TO 30ti SEPTEMBER 1882.

[^35]
PROGRESS REPORT OF THE ENGRAVING BRANCH FROM 1st OCTOBER 1881 TO 30 mI SEPTEMBER 1882.

Genesal Maps, \&c.

Title of Map.	Outline.	Writing.	Hills and sand.	Remn rhs showing progress.
	Sq. in.	Letters out.	Sq. in.	
Map of India, scale 1 inch $=$ 32 miles-				
Sheet 3	10,705	Heavy additions to outline, railways and lettering for 2nd edition.
, 4	5,350	\cdots	Revised and added to for 2nd edition ; finished.
	$\begin{array}{r} \mathbf{5 , 2 7 0} \\ 2020 \end{array}$	77 H.	Plate in hand; hills in progress.
" 6 ... \cdots	.1...			Revised and added to for 2ud edition ; finished.
Map of India in four sheets, scale 1 inch $=64$ miles"	13,458	196 H.	Additions and corrections done; hills in progress.
Mnp of Indie in two sheets, scale 1 inch $=80$ miles		45		Slight additions ; plate put down.
Map of India, scale 1 inch $=$ 96 miles		40		Ditto ditto.
Map of Bengal in two sheets, scale 1 inch $=16$ miles	60	9,284	Outline taken out, corrected and engraved ; plate put down.
Map of Central Provinces in two sheets, scale 1 inch $=16$ miles	\ldots	217 H.	Slight corrections to outline and writing ; hills in progress.
Map of Rajputane in tro sheets, scale $1 \mathrm{inch}=16$ miles	47	1,782	6621 H. 25 S. H.	Additional writing in progress engrared;
Map of Central India Agency in two sheets, scale 1 inch $=$ 16 miles			109 H.	Hills in progress.
$\begin{gathered} \text { Map of Assam, scale } \begin{array}{c} 1 \\ 16 \text { miles inch } \\ \text {... } \end{array} . . . \\ \text {... } \end{gathered}$	39	3,460	Large portion of old work taken out; new outline engraved.
Chart of the Indian Ocean		266	Additional writing.
Map of Himalayan Routes ...	140	40		Now outline ; plato in progress.
Map of Berar	320	288	Plate projected, border cut and outline done ; plate in progress.
Map of India, No. $2 \ldots \ldots$			\ldots	Corrections and additions done.
Index Chart to G. T. Sarvey Strange's Zenith Sector. Fron-	340	Additions and corrections done.
tispiece $\ldots \ldots$	41	.	Highly finished.
Strange's Zenith Sector, five other plates	1,827"	Plates 3 nad 5 finished; others, outline nearly finished.
Transit Telescope		292		Plate nearly filished.
Idiometer (Machine) by Colonel Campbell ...		192		Additional writing
Chronograph \cdots. ${ }^{\text {a }}$...		441		Plate nearly finished.
Commatator Board, plate 3 ...				Outline finished.
Graticule plate (brass) Mnjor Walerhouse's reproduc-	Outline and writing done.
$\begin{array}{ll}\text { tion in heliogravure } 27 \mathrm{~A} \\ \text { S.E. } & \ldots\end{array}$		450		Tille and imprint finished.
Ile de Capraja		199	Plate finished.
Geological specimens; 2 plates		80.4	Finished. ${ }^{\text {Ruled and finished. }}$
Tint No. 1, $212^{\prime \prime} 3^{\prime \prime} \times 18^{\prime \prime}$	\cdots			
Threc imprint plates		192		Dates taken out and re.cngraved
Total	596	67,695	66554 H. 25 S. H	

Indian Atlas Sheets (new) completed and published.

Atlas shrets-		Sq. in.	Letters cut.	Sq. in.	
$31 \mathrm{~N} . \mathrm{W} . .$.	\ldots	\ldots	340	7 S H.	
32 S.W.	252	172 S. H .	
[:] N.W. ...	\cdots	2,215	55 H.	
60, N.W.	105	131 H.	Completed up to margin.
07 SE	\ldots	\ldots	4,974	'习'	
77 Y.E.	29.4	21 HF	
	...		517	$\begin{array}{r} 3 \mathrm{H} . \\ \hline 17 \end{array}$	Ditto up to limits of enrvey.
$\begin{array}{lll} 190 \text { S.E. } & \cdots & \ldots \\ 139 & \text { N.W. } & \ldots \\ \hline \end{array}$.	\ldots	$\begin{array}{r} 305 \\ 1,596 \end{array}$	$\begin{aligned} & 17 \mathrm{IL} . \\ & 98 \mathrm{HI} . \end{aligned}$	Ditto up to limits of anrvey. Ditto up to margin.
Total 9 plates	-•		10,586	325JI. 179S. FL.	

PROGRESS REPORT OF THE ENGRAVING BBANCH FROM lat OCTOBER 1881 TO 30th SEPTEMDEK 1882.

Indian Atlas Shects (new) in progress.

PROGRESS REPORT OF THE ENGRAVING BRANCH FROM 1sT OCTOBER 1881 TO 30ti SEPTEMBER 1889.

Additions and Corrections to Indian Atlas Sheets.

Titie of Map.	Outline.	Writing.	Hills and sand.	Remarks showing progress.
Atlas sheets-	Sq. in.	Letters cut.	Sq. in.	
I N.E.	54		Slight additions, finished.
	10	9.4		Ditto ditto.
2 N.E.	10	Alterations to outline done.
3 N.E.		Slight cortections to outline and writing.
8 S.E.	9	349	100 S. H.	Heary additions ; plate completed up to margin.
12 N.E.		20	2 H.	Slight additions completed.
32 N.E.		381	Correations to outline and writing completed.
35 S.E. ...	57	4,592	New outline and heary additions in progress.
36 S.E.	….	Slight corrections to writing donc.
37 N.E. ...	\ldots	194	\ldots	Additional roads; district nomes and koundaries altered; com. fleted.
45 N.W. ...	\ldots	351		
45 45 45 S.W.W. S.	277 377	Ditto ditto. Ditto ditto.
52 S.W.	300 200	1 H.	Slight correction to boundary and
53 N.E.		76		Shills completed. ${ }^{\text {Slight additions to mritiog done. }}$
53 S.W.	166	Ditto ditto.
Gi3A. N.W.	27	Ditto ditto.
64 N.W.	550	Additions to outline and writing done.
(i4 S.W.	162	Slight additions to outline and writing done.
66 S.E.		1 H.	Slight corrections done.
	1,162	\ldots	Additions to writing done. Slight corrections, done.
86 S.E. $\quad \cdots \quad \cdots \quad \cdots \quad \cdots$	90	Ditho ditto.
97 S.W.	419	Corrections to outline and mriting done.
12.4.W. ...	\ldots	206	Additional writing and slight corrections to outline and hills done.
124 S.E.	436	\ldots	Additional mriting done.
${ }_{125}^{125}$ N.W.	84	$\xrightarrow{\text { Ditto ditto }}$ dito.
126 N.E. $\quad .$.	244	18 H	Nem Ditto dill mork done ; ndjoining
126 N.E.			18 H	hills touched up.
126 S.E. ...	\ldots	371	2 H .	additional writing; boundaries and hills corrected.
127 N.E.	323	3 H .	Additional writing; outline and hills corrected.
127 S.E.	395	4 H .	Additional mriting; outline and hills corrected.
128 N.E.	231	Additional writing ; boundarics corrected.
129 N.W.			24 H.	Additional hills comploted.
129 N.E.	66	1,015		Additional outline and writing done.
130 N.E.		6 H.	Hills re-etched, slight.
130) S.W.		72		Slight additions done.
131 N.W.	88	Slight additions to writing and boundaries, done.
$\begin{aligned} & \text { 2S.E., \& s.W., } 9 \text { N.W., } \\ & \text { 18 N.W., 22. S.W., } 23 \\ & \text { N.W., } 33 \text { S E., } 74 \text { N.E., } \end{aligned}$				
72 S.W., 72 S.E., θ IS.W., 3: N.W., 34 N.E., 34	12	4,638"	Corrections nud ndditions to railways and names done.
S.W., 34 S.E., and 35)				
Total	154	17,6.15	$1 \mathrm{IF} .100 \mathrm{S}$. H.	

Repains and Adritions to Old Plates of the Indian Allus.

..	320
	\cdots	\ldots	215
...	\cdots'.
...	\ldots	60
...	260

Additional names done ; plate pat
down.
Additional names done ; plate put
down.
Outside figures corrected.
liailwny and names cut.
Additional names and boundaries
done.

ploogress report of the engraving branch from lst October 1881 TO

 30th SEPTEMBER 1883.Repairs and Additions to Old Plates of the Indian Allas-concluded.

Neto Plates projected and Borders cut.

12 S.W.	Reprojected; new border cut.
13 N.W.	830	Ditto ditto ditto.
13 S.W. and S.E.	Ditto dito ditto.
14 Four qaurters	208	...	Projected; new borders and scales cut.
37 N.W. ...				Projected; new border cut.
39 N.W.	310	Ditto ditto ditto; scale and outside figures cut.
39 N.F.	New border cut.
40 N.W., S.W. and S.E,			Ditto dito.
60) Four quarters	208	Projected and new borders cat.
69 Ditto	\ldots	430	\ldots	New borders and seales cut.
62 Ditto			Ditto ditto ditto.
75 N.W.	New scale cut.
s0) Four quarters	208	Projected ; new borders and acales cut.
94 N.W. ... ${ }^{\text {.. }}$	52	\ldots	Projected.
94 N.E. and S.W.	104	Projected and new borders cut.
94 S.E. ${ }^{\text {a }}$		62		Outside figures cut.
$135 \mathrm{~N}, \mathrm{~W}$. and N T.		'	Reprojected.
144 Four quarters	\ldots	1,816	\ldots	New borders, scales, and ontside figures cut.
145 Ditto ...				New borders and scales cui.
153 N.E. ${ }^{\text {I }}$		371		Outside ligares cut.
153_S.W.'	Now scale cut.
Total	\ldots	4,649	

Abstract of Work Completed and in Progress.

Engraving.	Plates.	Steel-facing. Plates.				
Atlas sheets completed Ditto in progress in various	9	Double elephant plates, steel-faced Ditto ditto re-steeled...		14		
				12		
	${ }_{46}^{42}$	Quarter plates steel-faced		25		
General maps, plans, \&c. .ädit...		Miscellaneous plates steel-faced		35		
	77			11		
Projections and engraved borders	47	Ditto re-steeled	..	2		
cut, \&c.		Total		99		
Copperplate.printing. ${ }^{\text {and }}$						
		3, 302				
Impressions taken 7,573				... 225,576		
Proofs pulled	7,5731,053341			Number of letters engraved		
Transfers pulled						
Total	8,967					
C. W. COARD,		JOHN O. N. JAMES,				
Superintendent, Engraving Branch.		Assistant Surveyor-General, in charge Engraving Branch.				

Tabulated Slatement of the principal records prepared in the several Executive Offices of the Revenue Branch for the year ending $30 t h$ September 1882.

Table B.

Statement of work performed in the Draoing and Compiling Branch of the Deputy SurreyarGencral's Office during the year cnding 30th Septomber 1882.

Title of Mlaps.	Scale.	Remangs.
Puıjab.		
Districts Bannu, Dera Ismail Khan, and Thal of Muzaffargarh, in 44 standerd sheets, $30^{\prime} \times 15^{\prime}$.	$1=1$	Geographical lines have been iuserted on 132 of the 4 -iuch maps, comprising standard sheets $18,19,22,23,26,27$, 30,31 , and sent to press for photo. reduction to half scale. The 2 -inoh blue prints of sheets $19,23,30$, and 31 have been typed and drawn; the drawing of sheets 36 and 39 bas also been completed; and sheets 18,22 , 26 , and 27 are well advanoed, leaving 9 sheets to be taken up to complete these districts. Number of sheets published up to date, 25.
Distriot Rawalpindi, Knla Chitta Pahar, in 27 sheets, $7^{\prime} 30^{\prime \prime} \times 3^{\prime} 45^{\prime \prime}$.	$4=1$	The original maps drawn in the Executive's office and received up to date, viz. 13 out of 27, have been examiued and completed for press. Number of sheets published up to date, 13.
Punjab and Kashmir boundary, on distriot Sialkot along the Cbenab river and Tawi Nadi.	$4=1$	Original maps prepared by the Executive were examined, completed, and sent to press for publication for the use of the Punjab Government.
North-Western Prorinces.		
Districts Moradabad, Budnon, Tarai (part of), and Rampur state, in 22 standard sheets, $30^{\prime} \times 15^{\prime}$.	The typing and drawing of the remaining 6 tro-inch blue prints completed. During the year 20 sheets have been examined and sent to press for reduction and publication on 1 -inch scale. Ouly sheets 63 and 64 now remain to be sent to press. Only one sheet has yet been published.
Listrict Banda, in 16 standard shects, $30^{\circ} \times 15^{\prime}$.	$1=1$	Geographical lines inserted on 82 of the original 4 -inch maps, comprising standard sheets 112, 112A, 127, 128, 142, $14: 3,155,156$, for reduction to half scalo. Blue prints awnited. The blue prints of the 8 standard sheets mentioned in last jear's return have all been typed, drawn, and examined for press.
Meerut Division, districts Shaharunpur, Muzaffarnagar, and Meerut. Fine set showing village boundaries for reproduction to soale in \ddagger sheets, $15 \times 11^{\prime}$.	$2=1$	The originals of 16 sleets drawn in the Erecutive's offioe bave been received, $\mathrm{viz}_{\mathrm{iz}}$ Nos. $1,2,3,4,13,14,15,16,17$, $18,27,27 \mathrm{~A}, 28,29,30$, and 31 ; they havo been minutely exnmined in the head office, corrected, rendered suitable for photography, and sent to press for publication. Number of sheets published up to date, 8 .

Table B-continued.

Title of Mass.	Scale.	Remarrs.
North-Western Provinces-concld.	Inch. Mile,	
Conrse set, without village boundaries, for reduotion to half soale, $30^{\prime} \times$ 15 .	$1=1$	The 19 sheets received to date, viz. Nos. 1 to 7,13 to $18,27 \mathrm{~A}, 27$ to 31 (19 in all), have been examined, corrected, sud sent to press for publication. Number of sheets published up to date, 19 .
Reduction for Atlas of India, sheets 48 SE and 49 NE, containing parts of districts Muzaffarnagar and Meorut.	$\frac{1}{4}=1$	Prepared in Executive's office. Re-examined in head office with 1 -inch sheets, corrected, and sent to Surveyor-General's office for engraving.
Oudh (new edition), in 65 sheets standard size, $30^{\prime} \times 15^{\prime}$. Bengal.	$1=1$	The original maps, with graticule lines inserted, comprising 18 standard sheets, Nos. 105, 106, 121, 122, 123, 135, 136, $197,150,151,163,164,165,166,167$, 176,177 , and 178 , have been sent to press for lithography. Since last report sheets Nos. 139 and 140 have been published. Number of sheets printed to date, 6.
District Midnapore, in 18 sheets 30° $\times 15^{\prime}$.	$1=1$	The proof sheet No. 17 has been passed through press, and the publication of the entire district is completed.
Do. do.	$\frac{1}{4}=1$	The map of the district begun last year has been completed and submitted to the Surveyor-General's office for engraving.
District Noalholly, in 12 sheets, 30^{\prime} $\times 15^{\prime}$.	$1=1$	All the sheets were published during the yenr, excepting eheet No. 12, which is now under correction at press.
District Jalpaiguri, in 13 sheets, 30° $\times 15^{\prime}$.	$1=1$	Lithographic proofs returned by the Deputy Commissioner have been oompleted to show thana boundaries, which, however, still await the final sanction of Government. Press order is deferred peuding above sanction.
Distriot Mymensing, in 23 sheets, $30^{\prime} \times 15^{\prime}$.	$1=1$	Geographical lines have been inserted on the main oirouit maps, comprising sheets Nos. 240 and 254, and skeleton standards of these sheets, showing the limits of main oircuits, do., lave been projected for the guidance of lithographio branch in preparing the transfer drawings to be put down on stone.
District Pooree, Killa Khorda, in 40 imperial eheets.	$4=1$	Examined, touched up, and adapted for photography, hills added, and sent to press.
District Patna, Patna City	$10=1$	The origizal maps bave been examined and revised for a second edition, showing additions and alteratious supplied by the Superintendent of Wurks. Sent to press for publication.
Bankipore Civil Station	$10=1$	-.....

Table B-continued.
Assam.
District op Mapg.
Darrang, sheets $3,5,8,9$.

Bu:ma.

Distriot Hanthawaddy, sheets 115 , 116, 124, 125, in 11 sections, 15^{\prime} longitude $\times 7 \frac{1}{2}$ latitude, containing the Syrian township.

Bombry.

Deconn Topographioal Survey, including the Konkan, in 123 sheets, $30^{\circ} \times 15^{\prime}$, to latitude 16°.

Ditto ditto ditto.
Quarter sheets, each $15^{\prime} \times 7 \frac{1^{\prime}}{}$. Six sheets complete, and portions of seven sheets published on full soale of survey to meet special demands, es noted.

Index Maps.

Districts Dera Ismail Khan, Bannu, Rawalpindi, the Meerut Division, districts Ghazipur, Ballia, Benares, Mirzapur, Hanthawaddy, Bassein, Tbarrawaddy, the Decoan, and Konkan

Miscellaneous Traces, \&c.
Boundary between districte Jbang and Dera Ismail Khan.
Boundary between distriot Shahpur and districts Bannu and Dera Ismail Khan.
Boundary between Nepal and districts Bhagulpore, Durbhanga, and Mozufferpore.
Boundary between Nepal aud district Chumparun.
53 village plans of distriots Shahabad and Ghazipur.
Hooghly river and one mile of adjoining country on both banks from Phulouria Semaphore to Sola Mohan Creek.
Inserted village boundaries on Ilooghly riversheets from Kanchrapara to Calcutte.
A line of villnges along left bank of Hooghly river from Atcheepore to Brool Semaphore.
Plan of jungle block comprieing 20 villages of district 24-Pergunnahs.

Scale.	Remamig.
Inch. Mile.	
$1=1$	Sheets examined for a second edition and sent to press.
$2=1$	The original sheets drawn in the Execu tive's office were oarefully re-examined in the head offioe and sent to press for publioation on full soale for the use of the looal Government.
$1=1$	Since last report the 2 -inch standard sheets $61,62,68,75,76,77,84,85,86$, have been examined, correoted, completed for publication, and sent to press, making 72 sheets sent to press to date, including survey up to 1880-81.
$2=1$	Sheets 75, 76, 77, 84, 85, 86, have been sent to press for reproduotion to full soale for Forest Department; also sheets 30 SE, 31 SE \& SW, and 35 NE for Exeoutive Engineor, Poona Division; sheets 14 NW, 18 complete, 22 NW \& SW, and 26 NW for Collector of Thana. Sheets 30, 31, 35, 14, 18, 22, and 26 , had previously been published, in the usual course, on the 1 -inoh soale.
On various scales.	The index maps of the Meerut Division and the Deccan heve been re-drawn ; the others have been revised and brought up to date for the annual report of 1881.82.
$\begin{gathered} 4=1 \\ 4 \& 2=1 \end{gathered}$	Traoed for Deputy Superintendent of Sur vej. Do. do. do.
$4=1$	Do. do. do.
$2=1$	Do. do. do.
$4=1$	Do. do. do.

Table B-continued.

Titlit on Mapg.	Scale.	.	Mramame.

Miscellaneous Traces, \&o. continued. Inch. Mile.
Plans of two French settlements in district Balasora.
Completed boundaries of waste land blooks on the Deputy Commissioner's copies of atlas sheets.
Slieets containing Jalpaiguri Station and Environs.
Boundiry oommon to Sind and Khelat.
13 old mehalwar maps of district Sylhet, in duplicate.
Several Deccan triangulation oharts.
Ditto ditto ditto
Insorted course of Megna river as surveyed by Deputy Collectors under orders of the Board of Revenue, Lower Provinces, on the survey atlas sheets in this office.
Prepared a plot of portion of Sarua river.
Extract from plan of mouzal Jujhursing.
Boundary of 3 villages of district Azamgarh, touching on Ghazipur.
Sheets comprising the Eta Hills, district Sylliet.
Several board plaus of Hooghly river survey by Colonal Leach.
Prepared a plot of Rathamati river. Ditto 2 villages, distriot Jaunpur.
40 village plans and grants
1 sheet Punchunnogram
Typed title pages (24 sheets)
Inserted $1^{\prime \prime}$ sheet numbers and limits on eeveral cupies of Burma map.

Inserted boundary ns surveyed by Mesers. Shaw and Sinart between Goalpara and Garo Hills on 2 copies.
Completed maps of districts Agra and Muttra to show numbers and limits of $4^{\prime \prime}$ sheets.
Completed set of sheets of district Lakhimpur to show the boundary adjoining Seebs.gore, as shown in the $4^{\prime \prime}$ eheets of the latter district.
Completed all the printed copies in stack of sheet No. 11, Deccan series, to show the portion of district Thoua surveyed in 1879-80.
Completed all the printed copies in stock of sheat No. 10, Decoan series, to show boundaries that were not available at time of publication.
Prepared new indes to the 1 " sheets of Bengal.
Prepared dingrams showing the avernge heights of 5 minute compartments in the several districts of the Punjab and N.-W. Provinces as far as availablo in this office.
$8=1$
$4=1$
$4=1$
$32=1$
$4=1$

Inch. Mile
$\frac{1}{2}=1$

Prepared for Collector
For Deruty Commissioner.

Traced for Mr. Boud, Assistant, Great Trigonometrical Survey.
$4=1 \quad$ Traced for Agent, Governor-Genoral, Khelat.
$16=1$ Traced to illustrate report on Sylhet Test Survey.
$\frac{1}{2}=1 \quad$ Traced for Deputy Superiatendent.
$\mathbf{1}=4$ Do. do. do.
$4=1 \quad$ For office record.
$32=1 \quad$ For Settlement Officer, Khorda
Do. do.
do.
$16=1 \quad$ Traced for Deputy Superintendent.
Do. do
do.
$16=1 \quad \begin{aligned} & \text { Traoed for comparison with provious sur- } \\ & \text { veys. }\end{aligned}$
$16=1$ $\begin{aligned} & \text { Traoed for comparison with previous sur- } \\ & \text { veys. }\end{aligned}$
$8=1 \quad$ For Settlement Officer, Khorda.
$16=1$ For Settlement Commiesioner, Punjab.
$4=1 \quad \begin{gathered}\text { Copied for } \\ \text { others. }\end{gathered}$ Deputy Commisbioner and
$150 \mathrm{ft} .=1 \mathrm{in}$ Traced for Deputy Collentor.
For volumes of Burma published cadastral plans.
For office record and use of executives.

For Deputy Commissioner and office use.
$t=1$ For Exeoutive Engineer.
$1=1$ For Deputy Commissioner.
$1=1$ For office use and issue.

De. do. do.
$1=16$ For ofioe use.
For Surveyor-Grneral's Offica

$$
(90)
$$

Table B-continued.

Tithe op Misps.	Senle.	Rramies.
Miscellancous Traces, \&c.-oonoluded.	Inch. Mile.	
Coloured a set of sheets of district Chumparuu to show latest thana and subdivision boundaries.	$1=1$	For Survegor-General's Office.
Coloured a set of sheets of distriots Hooghly and Howrab.	$1=1$	Do. do.
Mrap-colouring.	No. of SLaps.	
Maps on various scales	109	For Surveyor-General's Office.
Do. do.	109	For Deputy Surveyor-General's office.
Do. do.	610	For the India Office.
Do. do.	1,04t	For Government officiale.
Total	1,872	
Examination of Proof Shets.		
Photozinoograph maps	282	

Description of Work.	Remarit.
Traverse Data, \&c., supplied.	
Of 50 villages of Moradabad along Ganges river.	For Deputy Superintendent.
Of Hooghly villnges from Botanic Garden to Chandernagore (60 pages).	" Assistant ditto.
Of Eta Hills, district Sylhet, with co-ordinates of village trijunctions.	, Ditto ditto.
Of Cachar granta (17 pages)	,, Deputy Commissioner.
Of Jaunpur, along Benares, with co-ordinates of Pargana trijunations.	" Ditto Superintendent.
Of Captain Samuell's Nepal boundary, along Purneah and Bhagalpur.	" Absistant ditto.
Of districts Tirhoot and Sarun, along Nepal...	, Ditto ditto.
Of M. C. 11, 12, and 13 of Moradabad, along Ganges river.	" Deputy ditto.
Of Agra and Muttra, along Aligarh	, Ditto ditto.
Of Sirsm and Rohtak, along Hissar	" Ditto ditto.
Triangulation palues of three charts of Deccan Topographioal Survey.	, Ditto ditto.
Alphabetical indexes of distriot Hanthawaddy (four copies).	, Settlement Officer.

Table B-concluded.

Jescription of Works.	Remanks.
Computations examined.	
$\begin{array}{clll}\text { District Jaunpur } & . . & \ldots & 1878.80 \\ \text { Ditto Banda } & \ldots & \ldots & 1877-78\end{array}$	
	Final examination.
Dietricts Sabaranpur and Muzaffarnagar 1878-79	\}
Miseellancous Work.	
Caloulation of areas of Hill Tipperah and	For Bengal Government.
Gurjat states, also Thana areas of districts	
Chittagong, Sonthal Pergunnals, Sing.	
bhoom, Hazaribagh, Lohardugga, and Darjeeling.	
Preparation of area statement of district Noakhally by summation of villages.	" publication with sheets.
Calculation of co-ordinates for the projection of districts Banda, Tarai, Dera Ismail Khan, Bannu, and Mymensing, and of Patna City.	, office use.
Caloulation of areas of districts Goalpara and Garo Hills according to revised boundaries.	, Deputy Commissioner.
Entering of heights of 5^{\prime} compartments for the districts of the Punjab, North-Western Provinoes, Oudh, Bengal, and Centrai Provinces.	" Surveyor-General's Office.
Preparation of a statement showing soale and oharacter of survey of the districts in Central Provinces.	, Government Central Provinces.

[^36]Table \mathbf{C}.
State of Publication of Cadastral Maps on the 30th September 1882.

Detail of Examination in connection with Publication.

$\left.\begin{array}{c}\text { Deptity Surveyor-Genprad's Office, } \\ \text { Calculta, 1st Ocloler } 1882 .\end{array}\right\}$
J. E. SANDEMAN, Major, Deputy Superintendent at Headquarters.

Sjecimen of Khusrah.

- Notp.-On the first division of the Innds of a village betweon the eaveml proprictors, tlie divisiona are called patties. When any of the patties are again snblivided
 village, and patti is tho minor, providod both exist in a villege.

CADASTRAL SURVEY.-DISTRICT MIRZAPUR.-SEASON 1881-82.
Specimen of Jummabundi Slips.

Extract fiom Report of J. O. N. James, Ess., Assistant Surveyor-General, in charge Lithographic Brauch, Surceyor-Gencral's Office.-Season 1881.82.

The number of maps, plans, drawings, \&c., printed during the year amounts to 157,440 copies. Of these 121,353 , or more than 3 ths, were for other departments. During the same period 10 sheets of the Oudh Revenue Survey of the year 1860 to 1871, aud 2 sheets of the Julpaiguri district, each comprising 30^{\prime} of longitude by 15^{\prime} of latitude, and an Index map to the sheets of the Noakholly district, besides 337 subjeots of all sorts and sizes (obielly small) for other departments, were newly drawn either on stone direct, or on paper and transferred to stone.

The first edition of the map of India in 6 sheets, soale 1 inch $=32$ miles, transferred to stone in 1881, was completed and printed in December of the same year; a second issue, in which many additions and correotions were made on the stones, was also published during the year under review (1881-82).

The outline of the new map of Bengal, scale 1 inch $=16$ miles, was obtained from transfers from the engraved plates, in 4 sections; the hills were drawn direct on stone with corrections and additions. The frequent changes in the district boundnries in Bengal bave decessitated the lithography of this map in two sets of stones, - one to shew in blook the topographical and other permanent details, and the other to shew in red the varying district boundaries and names. This map is now nearly ready for publication.

The outline and part of the engraved hill work of a preliminary map of the Central Provinces, scale 1 inch $=16$ miles, was transferred to stone from the inoomplete ongraved plates, and the incomplete portions of the hills were drawn on stone, and the map was nearly in a fit state for publication by the end of September 1882.

Eleven sheets of the 1 -inch maps of the Noakholly district, drawn during the preceding year, have been printed and published during the year; also two sheete of the new edition of Oudh, Nos. 139 and 140.

The total number of subjects printed in the lithographic printing room was 393, of whioh 26 were printed in two colours, 28 in three colours, 6 in four colours, 2 in five colours, and 1 in six colours, and the remainder in black only. These required 182,091 pulls or impressions.

Four engraved sheets of the Indian Atlas (Nos. 30, 67, 112, and 119) were in a damaged condition and past repair. Transfers to stone were made from these plates, and many additions and corrections were then made on the stone to furnish a stock of the sheete for iesue pending the preparation of new copperplates. The following district maps were published from material obtained by transfers from the engraved Atlas plates, with additions and alterations on stone, viz. Seebsaugar, Dacon, Sylhet, Beerbhoom, Balaghat, Kamroop, nud Sonthal Pergunaahs. Maps of the following districts, obtained in a similar manner, will be published shortly, viz. Goalpara, Kulnah, and Durrang.

The stntement L. 1 shews the detail of the departmental work completed during the year, amounting in value to IRs. 25,830. Statement L. 2 shews the amount and value of work done for other departments, amounting to Rs. 20,111. Statement L. 3 shows the amount and value of work done in the type department, amounting to Rs. 8,317, exolusive of the value of transfers included in the cost of the several lithographic maps. Statement L. 4 is the abstract of the whole work completed during the year, as woll as the outlay in salaries and contingent charges.

Mr. Lepage, who had been officinting as Head Assistant, was permanently appointed to the post in December 1881. He obtained leave for three monthe, and during his absence Mr. A. G. Palmer, Engraver, officiated and conducted the duties of head assistant very satisfactorily.

Mr. Niven, Mead Printer, obtained leave on medical certificate for one year, from llth April J882, and during his nbsence Mr. Watson, of the Photographio Branch, has officiated ar Printer. Mr. Ferns, Draftsman, was transferred to the Guzerat Survey Party on the 1st December 1881.

Messre. Lepage and Watson have performed their duties zealously, and have done their utmost to keep pace with the beavy demands made on the office from numarous Government departments. The draftsmen and clerks have given entisfaction.

STATEMENT OF WORK DONE BY THE LITHOGRAPHIC BRANCH, SURVEYOR-GENERAL'S OFPICE, BETWEEN THE lsT OCTOBER 1881 AND 30th SEPTEMBER 1862.

L. 1.

Work done for the Survey Departinent.

Work done for the Survey Deparfment-continued.

Dracelption of Ma	sps.								Falab.	Emichit.
Brought forward'."	69	652	10,606	11,168	12,274	$\begin{array}{\|ccc\|}\text { H., 4. } & \text { p. } \\ \text { 18,667 } & 6 & 7\end{array}$	
Dibtriot Mapg-concinued.										
Map of distriot Sylhet	Further correc tions, sc.,	1 inch=4 miles	Atlas	1	\cdots	850	350	$\mathbf{8 5 6}$	907 E 11	
Do. of ditto Beerbhoom ...	Further corrections made and colour atone	1 inch $=4$ miles	Super rojal ...	1	104	100	204	908	00184	
Do. of ditto Balaghat ...	Further corrections, \&c.,	1 inoh $=4$ miles	Atlog ...	1	\cdots	250	250	260	138155	
Do. of ditto Sonthal Pergunnabs	Further corrections, \&e., made and colour stone prepared.	1 inch $=$ ¢ miles	Double royel...	1	102	102	204	300	24050	
Do. of ditto Kamroop ...	corrections and aditioug made	1 inch $=4$ miles	Ating ...	1	\cdots	252	252	252	10132	
Do. of ditto Raepore	Ditto ditto	1 inch $=4$ miles	antiquarian ...	2	\cdots	\cdots	\ldots	89 10	Not yet print ed.
Reprints. Gbneral Mapb.										
Map of Southers Alghanistan, in 4 sheets.	...'.'	1 inch $=4$ miles	Ditto ...	4	\cdots	400	400	800	36700	
Map of Punjnb Provinces, in 8 shivets, glueets Nos. 1, 4, 6, and 7.	1 inch $=9$ miles	Double phant. ele-	4	\cdots	170	170	170	0718	
Mep of Indin, No. . Ath edition... Ditio in 2 sleeta	$\begin{aligned} & 1 \text { inch }=128 \text { miles } \\ & 1 \text { inch }=04 \text { miles } \end{aligned}$	Imperinl Doublo ele-	2	100 ...	${ }_{85}^{25}$	${ }^{125}$	${ }_{60} 6$	$\begin{array}{ccc}09 & 0 & 0 \\ 28 & \text { b } 10\end{array}$	
		1 inch $=4$ miles	phant.	8						
division, sheets Nos. 3 und 4.	Corrections and additions mnde.	1 inch $=6$ miles	Antiguarian	2	...	840	40	240	22768	
Mup of Eustern Dengal, Assam, Burms, and yart of Chins and Siam, in \dagger sheets.	addiom	J inch $=32$ miles	Imperial ...	4	...	60	60	400	8800	
Msp of Noth-Western Provinces and Oudl, in 4 seetions.	$1 \mathrm{inch}=10$ railes	Ditto ...	4	\cdots	50	50	400	10628	
Blap of Enstern and Western Dengal, sheets Nos. 8, 11, 13,	1 inch $=8$ milles	Ditto ...	6	100	115	215	315	0246	
19 , and ± 0. Mup of Eastarn Bengal, sheet No. 10.	Corrections made and colour	1 inch $=8$ miles	Ditto ...	1	100	60	150	250	01117	
Map of dessm, in 0 sheets, sheets Nos, 9, 5, 7, and 8.	Corrections made and colour stones prepured of No. 3 only.	1 inch $=8$ miles	Ditto ...	9	275	100	375	975	216140	
Map of Bengal, Behar, and Orissa	-	1 inch $=32$ miles	Double phant. ele-	1	...	76	75	75	4238	
Digtict Map.										
Map of district Mymensingh"	1 inch $=$ \$ miles	40×40 paper	1	\cdots	100	100	100	81184	
Index Mapb.										
Inder Maps, Nos. 1, 2, 5. 7, 8, and 9 partios, to accompany annual roport.	Corrections, \&c., mado and co lour slones pre pared.	...	Foolecap ...	5	2,500	250	2,750	7,700	472210	
Inder to the Survay of South Sylleat and Tipperah hills, to	Correotions mndo and colorr and	Ditto ...	1	600	65	505	1,605	0090	
Index to the aheets of Daluchistan Survey, to accompany noninal report.	Ditto ditto	Ditto ...	1	450	50	000	0311	113100	
Index to the Indinn Allas shewing the state of the engreving to 1st Oetober 1881, lo accompany annual report.	Ditto ditto	-..	Ditto ...	1	000	\ldots	600	1,200	8817	
Map of Indin, shewing the progrew of the Imperial survey to itat Octoher 1Ns1. to accompany aunual repart.	Dilto ditto	$1 \mathrm{imoh}=128$ miles	Imperial ...	1	400	\ldots	400	1,600	109110	
Index to the topegraphical surver. district Kohnt.	….	\ldots	Finlt-ghcet	1	\cdots	105	105	105	078	
Srusil inder to the sheots of Iudian atles.	$\begin{aligned} & \text { Colour } \\ & \text { prepared. } \end{aligned}$'•	Foolsc:ip ...	1	${ }^{600}$	25	525	1,025	84411	
Plaite.										
Plinn of Calcutta, in 2 sheets	0 inches $=1$ mile	Double olephunt.	8	\ldots	107	107	429	132 if 6	
Guide planot simla and Jutog	4 inches=1 mile	Atus ...	1	...	109	108	109	643 \%	
Total		116	8,283	13,576	20,050	32,727	22,470 13 b	
Miacellnmpous maps, ac. Condastral minps	$\begin{aligned} & \ldots \\ & \cdots . . . \end{aligned}$		18 21 21		$\cdots \cdots .$	$\underset{214}{1,67 \mathrm{~A}}$	$\begin{gathered} 1,901 \\ 2 \times 4 \\ \hline 204 \end{gathered}$		
Lepartmental forms …	Items ...	27	…		$1 \cdot+, 210$	17,887	$2,20+18 \quad 8$	
Grand total'	191	6,283	19,770	30,087	62,773	25,8310 00	

STATEMENT OF WORR DONE BY THE LITHOGRAPHIC BRANCH, SURVEYOR-GENRRAL'S OFFIOE, BETW EEN THE IsT OCTOBER 1881 AND 30TII SEPTEMBER 1882.

L. 2.

Worl: done for other Departments.

Nayer of Drpabtabmis.	Number of maps.	Number of sheets.	Number of sheets coloured	Number of sheets ancoloured	Number of copien.	Namber of impressions.	Vaite.
Foroign Department ...	29	29		29	1,711	1,731	041109
Miliery Department ...	44	52		61	10,563	12,019	2,4771819
	${ }^{6}$	${ }_{8}^{4}$		6	¢,8,839	${ }_{\substack{6,738 \\ 6,531}}^{\text {c, }}$	${ }^{518} 694$
	34	$3{ }^{8}$	i1	23	3t,099	83,004	2,128 ${ }^{\text {2 }}$
Marine Survay Department	1	1	1		${ }_{1}^{240}$	720	${ }^{221} 818{ }^{818}$
	4	4			2,1078		4815111 615
Public Works Department, Goverament of India and Bengal.	θ	θ		8	2,137	2,239	84908
Punjab Covenmmit .i.	8	${ }_{4}^{9}$	1	${ }_{4}^{2}$	1,642 1,105	2,832	47911 691610
Office of the Superintendent, Consas Operations, in Bengal	5	6		1	6,062	10,377	1,320 910
Meteoralogienl Reporter to the Government of Iudia ...)	7	7	3	4	2,639	4,239	61480
Archmon, sical Surrey of India	24	24		24	13,650	${ }^{\text {g,065 }}$	1,029 ${ }^{\text {9 }} 0$
Geologican Snrrey of Lidia	10	10	4	${ }_{6}^{6}$	0,789	12,873	1,6881211
M iscelluncous dramings	89	83	8	75	30,677	26,571	3,088 1010
Mapg, de., drawa but not priuted	70	70		${ }^{68}$		2,317 13 3
Total	337	${ }^{48}$	42	304	1,21,363	1,29,295	20,111 010

L. 3 .

Statement of type-work executed, exclusive of transfcrs, \&sc., already included in the cost of the several Lithographic Maps, \&c.

L. 4.

General Abstract of Out-turn and Value of Work porformed.

Statement of Expenditure.

Sumpryor-Genkral's Ofpice,
 Lithooraphic Branch,
 Calcutta, 22nd December 1882.

JOHN O. N. JAMES,
Asst. Shreyor-General, in charge, Lithographic Branch, Surveyor-Gencral's Office.

Extract from Report of Major J. Waterinuse, Assistant Surveyor-General, in charge Photographic Branch, Surreyor-General's Oftice.-Setson 1881-82.

I rave the honour to submit the usual tabular statements of work done, expenditure, \&e., in this branch of your office during the survey year from lst October 1881 to 30th September 1882, viz.-
(A) Abstrnot of work performed during 1881-82. (Printed in Part II.)
(B) Comparative statement of the out-turn of 1880-81 and 1881-82.
(C) Statement showing the value of work done for other departments.
(D) Statement of expenditure and value of work done.

Out-rurn--Ordinary.-The out-turn of ordinary departmental and extra-departmental work shows a considerable increase in negatives, transfers, and press pulls, though the number of printed sheets, both single and combined, is less.

The work passing through the office during the year has been of the usual miscellaneous olaracter, as will be seeu from the return of work done for other departments, which shows a steady increase in this direction. The Egyptian cumpaign caused a great demand for reproductions of charts of the Suez Canal, Red Sea, ports of Alexandria, Port Said, and Suez; also for maps of Egypt. The total number of these maps printed was about 4,430.

Cadastral.-On the cadastral side also there has been a oonsiderable increase in the number of sheets photographed and transferred to zinc, the total number amounting to about 5,000 shects, which is the lighest figure yet reaohed. The out-turn in pulls and printed sheets is not so great, owing chiefly to the reduction in the number of copies printed off for the North-Western Provinces from 25 to 10 , which entails loss of time in constantly ohanging plates.

Arrangements have now been made for a stendy out-turn of 20 to 22 sheets a day, or about 6,000 sheets in the year, part being done by photography and part by tracings prepared for zinoography in the Deputy Surveyor-General's offioe; aud this is about the full extent to which we can work with the present staff and accommodation. The number of sheets a year that can be turned out depends, however, upon the number of copies printed of each slieet; and as this varies for each province-thus for North-Western Provinoes 10, for Burmah 34, for Bengal (Khurda) 43-it is difficult to make any close estimate of probable out-turn.

Expenditcre.-As will be seen from Table D, the expenditure of the office, including establishment and stores, has been Rs. 93,140, as against Rs. 89,560 of the previous year. The value of work done for which credit is taken, as caloulated by the scale drawu up by me in 1479, has been Rs. $1,14,795$, showing a balance in favour of the department for the year of Rs. 21,648. The ralue of the whole worls done duriug the year is Rs, 1,25,260. From this it appears that the rates Inid down in the scale are more than amply sufficient to onrer the cost of the work done, and I proposo to take an early opportunity of going into this question again, to see whether the rates can be reduced.

Personnel. - I returned from furlough and relieved Major Cowan on the 26th December 1881. There bave been few changes in the establishment during the year, the principal one being Mr. Caddy's resignation in February of his post of storekeeper. Mr. Dempster has since had oharge of the stores and making up collodion, \&o. Mr. J. Harrold returned from furlough aud resumed charge of the photo-transfer printing branch on the 21 st June. In the zine-printing branch Mr. E. A. LeFranc has been superintending the cadastral work during Mr. Watson's deputntion to lithographic branch since 10th April; and during Mr. B. Mackenzie's absence on privilege loave from July to October he took clarge of the office presses, Mr. A. P. DaCosta taking charge temporarily of the cadastral prosses.

The establishment of the office was generally reorganised and arranged from the commencement of the current financial year, as reported to Goverament in your No. 1146, dnted 19th April 1882. The ohanges, however, were chiefly in designation and pay of the different posts. I have not yet been able to fill the post of head assistant, but hope to find a suitable incumbent in the course of the curreut year.

Processrs.-There have been no changes of special importance in the processes worked in the office beyoud that in intensifying negatives we seem at last to have succeeded in doing away with the bad-smelling hydro-sulphate of ammonia for intensifying, and have replaced it by a solution of -

					Parts.
Hyposulph:te of soda	\ldots	\ldots	\ldots	\ldots	30
Liquor ammonia	\ldots	\ldots	\ldots	\ldots	60
Glycerine	\ldots	\ldots	\ldots	\ldots	\ldots
Water	\ldots	\ldots	\ldots	\ldots	\ldots

This ohange will effeot a very considerable saving in expense, the full amount of whioh oannot yet be estimated.

The method has tho defeat that the films become very tender when dry, and will not bear handling; but this appears to be obviated by coating them with a mixture of albumen and gelatine-

						Parts.
Gelatine	\cdots	20
Water	500

and the whites of two egge.
I have also found a method of intensifying which appears likely to be useful for apecial half-tone work.

The collodion plate, after exposure and development, is intensified slightly with pyro-gallic aoid and silver or iron and silver, and, after washing, plunged into a solution of bromide of oopper at 10% which at once ohanges the colour of the film to a light canary yellow. It is then plaoed in a bath oontaining the ordinary ferrous-oxalate developer. This speedily darkens the colour of the film to a dark olive green, whioh becomes darker and darker up to a certain point by leaving the plate immersed in the solution. It is then taken out, washed, and dried. If not intense enough, the operatiou may be repeated, but the colour of the image is much more non-nctinio than it appears. I have since found that instead of the bromide of copper, Carey Loa's solution of -

Saturated solution of bichromate of potash...			...			3
Hydrochlorie acid			1
Water			48

may be used : it is almost equally effective, and much cheaper.
In the photo-transfer printing some exceedingly good results have been obtained by using an enamelled paper highly glazed with gelatine as the basis of the transfer prints. The paper is sold by the Autotype Company as a transfer paper for pigment printing. It can either be sensitised as it is in a bath of bichromate of potash, or be coated with a thio solution of gelatine and bichronate. In some cases the best results are obtained by inking in with a roller on the damped gelatine surface, but on the whole the usual. method of inking in and washing seems to answer best. A small supply of this paper hns lately been received from England ; but being more thickly coated with gelatine than that I brought out with me, has not given very good results for large maps, where the sections have to be joined, though for work within the limit of a single negative it will be very useful.

We bave made several trials of inking in the trangers with velvet rollers, as done at Vienna and Woolwioh, but have not been able to obtain better results than we usually get either by washing or by rolling up with an ordinary lithographic roller. The latter, in cases where the work is very fine, is exceedingly useful.

Collotype.-I should have been glad to have been able to start this process again, but we have bad few subjeots for which it could be used with ndrantage, and more attention bas been paid to heliogravure. The press obtained froni M. Poirier seerns exceedingly good for the purpose, and ne soon as opportunity offers I hope to return to this process.

Heliogravere.-During the year I have given as much attention to this process as other demands on my time allowed. Two plates taken from origiual drawings in Indian ink of trap crystals have been reproduced by the process, and upwards of 800 copies of each printed for publication in the Records of the Geological Survey of Indin; four other similar plates are in hand. A plate of coins was reproduced for the Asiatio Society, but not published. A reduotion of a sheet of the Atles of ladia was algo dove as an experiment.

More might have been done, but, apart from interruptions from other work, I have been trying to perfect an improvement which I found resulted from usiag tissue glazed with collodion. Owing to the fiue smooth surface of this tissue the gelatine reliefs obtained with it are very much sharper in the details, nad develop much clenrer than they do with unglazed tissue ; and this is particularly important in map and other line work, where absolute sharpness of the lines and a olean ground are imperative. Unfortunately, the collodion surface is apt to split away from the oopper in drying ; nud in the electrotypiug bath the oopper solutiun gets underneath it and forms irregular deposits.

I have tried a grent many ways of overcoming this difficulty and of obtaining the same advantages in some other mauner, but the results as yet are not altogether satigfactory.

Substantinlly, the process is the same as I was working before I went on furlough ; but the experience gained during my stay in Europe, from what I saw at Vienna and Floronee, and from independent work at the Autotype Works at Ealing, has been of insmense use, and the improvements I have now introduced seem to have put the process on a practical footing, though it still requires perfection in certain points. It appenrs therefore desirable to give a full desoription of the whole process, as I am now working it.

Before going into details, it may be briefly stated that the prooess consists in obtain. ing by the ordinary pignent-printing process a photographic image in relief on a polished nad silvered copperplate. This relief is formed of insoluble gelatine, aud, if it is of a half-tone subject, has its surface roughened or grained whilo wet by means of waxed sand or emory, which is removed when the relief is dry. It is then black-londed, and copper is deposited on it by the electrotyping process, so as to produoe a copperplate,
on whioh the design is reproduced in intaglio, with lights and shades of varying depths, corresponding to the gradations of tint in the original.

Thr pigment tissue. -The pigment tissue consists of paper evenly coated with a mixture of gelatine nad any suitable pigment. As a rule, it is purchased ready prepared from the Autotype Company. Their engraving black, warm blaok, and standard brown tissues, all answer well.

The prepared tissue keeps fairly well, but it is an advantage to have it as fresh as possible, otherwise the gelatine surface beoomes more or less insoluble by keeping, espeoially in damp weather, and forms a dark scum over the picture.

Sensitising.-The tissue ie sensitised by immersing it in a solution of -

Biohromate of potash	\ldots	\ldots	\ldots	\ldots	1 ounce.
Alcohol \ldots.					
Liquor ammonia	\ldots	\ldots	\ldots	\ldots	5
Water	\ldots	\ldots	\ldots	\ldots	\ldots
$\frac{1}{2}$ drachm.					
Water	\ldots	\ldots	\ldots	25 ounces.	

In the hot weather this solution must be cooled with ice.
The bath lseeps well, but should not be used if it appears at all brown.
Tho tissue is laid in this for a minute or two, till it softens, and is then taken out and laid evenly down on a glass plate, and the excess of moisture removed with a squeegee or glass rod. It is then lifted off the glass and placed in the drying-box to dry.

To obtain the most perfect sharpness in the reliefs, it is desirable that the tissue should bo dried so as to have a very highly polished surface, which will lie in perfectly close contact with the negative. This is best obtained by drying it in contact with a plate of glass, but the latter must be ooated with some substance which will permit the tissue to be readily stripped off when dry ; and in this there is a good deal of diffculty.

In Vienna the glass plate is rubbed with powdered French chalk, but this I have found very uncertain in its action when used with tissue sensitised as above: so are wax, stearine, and paraffin. Linseed oil varnish answers well, so does cooonnut oil ; but a certain amount of the fatty substance is taken up by the tissue and diminishes its adherence to the oopperplate support, so that it is liable to lift and blister in the after processes.

The substance I have found answer best in many ways is oollodion, whiol has very distinctive advantages in the sharpness and cleanness of the images developed upon it; but on the other hand, it also has the grave defeot noticed above of splitting on the plate, and the grain in half-tone subjects is not so well brought out as on unoollodionised tissues, oollodion being one of the best preventatives of reticulation or the natural graining of the gelatine which occurs in hot weather.

The best way of using collodion is to thoroughly clean a piece of patent plate glase, rub it with a little powdered Frenoh ohalk, then coat it with a moderately thin and absorbent collodion containing-

Pyroxyline	\ldots	\ldots	\ldots	\ldots	1	part
Alcohol	\ldots	\ldots	\ldots	\ldots	50	
Ether	\ldots	\ldots	\ldots	\ldots	\ldots	50

and allow this to become perfectly dry.
The collodion being dry, the glass plate is immersed in the sensitising bath along with the tissue, and the latter is drawn out with the gelatine side in contaot with the collodionised surface and pressed closely down to it with an Indian rubber squeegee, which removes all excess of fluid. The plate is put into a drying box, which may be moderately heated, till the tissue is dry. This generally takes two or three hours.

Some writers recommend that the collodionised glass should be put in water as soon as the collodion has set, and washed till all appearance of greesiness is gone, and the wet eeasitised tissue npplied to the wot surface of the collodion. I have not found this answer so well ns allowing the collodion to dry thoroughly. It may, however, answer with suitable collodion.

The tissue being dry the edges are out round, and it should readily leave the glass plate and show an evenly smooth and brillinat surface. Pienes of the required size are out from it with the nid of a properly squared glase plate.

The varnish prepared by the Autotype Company for the transfer of pigment prints also answers very well in giving a good glazed surfface and allowing the dry tissue to be ensily remored, though the imnge does not develop so olearly as with collodion, and the varnieh is rather brittle nud liable to crack in rempring the tiesue, the craoks showing on the finished plate. The way of applying thn varnish is much the same as with the oollodion, the glass plate being coated with the varuish, allowed to dry, and the wet tissue squeegeed down upon it.

Erposure to light.-The tissue being cut of the proper size is laid on the negative in the printing-frnme, so that the imnge may be square and correctly centered on it, and is exposed to light in the usual way under a verersed negative; tho time varying in diffused light from nbout δ 't 10 minutes for line suljeots, to 10,15 , or 20 minutes, or longor, for half-tone subjects, ncoording to the density of the negative, strength of light, \&o. An aotinometer may be usefully employed, ns in ordinary pigment.rrinting; but the light in this oountry being generally bright, timo is a sufficiently near guide to the proper exposure.

Derelo pment of the imagr. - The exposod tissue is taken out of the printing-frame and immersed in perfectly cold water (in hot weather ice must be used to cool it), drawn out agniu
quickly in contact with and squeegeed well down to a polished copperplate which has been lightly silvered with a solution of nitrate of silver in cyanide of potassium, the object of the silvering being to prevent the adherence of the deposit of copper in the subsequent operation of electrotyping. Care must be talen to lay the tissue down equarely and in its proper place ou the copperplate, and the squeegeeing is best porformed by laying the plate and tissue down ou a wooden support standing in a trough.

The superfuous moisture being wiped off the back of the tissue and edg-s of the plate, they are set aside for about 10 minutes, and then plaoed in clean warm water, just about us hot as the hand can bear it comfortably. After a few minutes the paper support of the pigmented tissue will be loosened, and may le removed, leaving a black, slimy-looking massn the plate. By leaving the plate to soak a little longer in the water, gently moving it from time to time to wash away the dissolved gelatine, the image will gradually appear and the development may be finished by dashing the warm water over its face with the hand till the details all appear clear and the soluble gelatine is all removed. Should the image be too dark from overpristing, the use of warmer water in the later stages will lighten it up. In any case it is desirable that the ground of n line drawing or the highest lights of a balf-tone subjeot should appear in bare copper ; but in this country there is great dificulty in avoiding a slight scum of gelatine.

After development the plate is rinsed in cold water, and may sometimes be lightly brushed over with a soft brush to remove any lonse soluble gelatine or pigment still adheriug to the plate. If a line subject, the plate is now drained and wiped at the back an 1 along the borders to remove as muoh water as possible, and then plunged into a bath of strong spirit of wine. This at once contracts the gelatine forming the lines, and gives the latter a crispness it is difficult to obtain in any other way.

With some tissues the use of alcohol will also give a rough velvety surface and a certain amount of grain. Three or four years ago I found an alooholio solution of tannin most useful in giving grain and the required hardness to the film; but with the tissues now manufactured by the Autotype Company, I find it of no use at all in graining, though it tans the gelatine and bardens it. It causes, however, scummy markings which are diffioult to remove, and on the whole I do not now recommend its use.

At Vienna, line subjects are first dried off and then soaked in a solution of bichromate of potash at 5% for about half an hour; they are then riused in water and dried slowly without beat. This is a very good plan, but in the hot weather I find that the reliefs run if left to dry elowly, and therefore quiok drying of with spirit is better. The bichromate bath may, however, be used with advantage nfter the drying off with spirit.

For half-tone subjecte, the treatment is quite different. After rinsing in cold water, the developed picture is first placed in a bath of bichromate of potash at $\%$ and allowed to remain for about half an hour. The superfluous biobromate is then washed out under the tap, so as only to leave that absorbed by the gelatine.

The object of the bichromate bath is to harden the gelatine relief and renãer it less linble to injury in the after process of graining, without at the same time making it too tough to reeoive the grain, as alum or ohrome alum would do. The bichromate also seeras to aid in the production of a good grain, either by a alight crystallisation in the gelatine or by some repulsive action eserted on the greasy graining powdor.

Graining. - In order to produce proper prints of half-tone subjeots in the copporplate press, it is essentinl that the different gradations of shade should be broken up into a grain consisting of a multitude of little points, which will ensure the hollows in the plate bolding the proper amount of ink ; and it slould therefore be comparatively coarse in the shadows, gradually becoming finer, in proportion as the tiuts become lighter, tillit disappears entirely iu the high lights. The obtaining of suol a grain in a simple way has been the great difficulty iu the way of photographio engraving processes for many years past, and various methods have been proposed from time to time to overcome it. In most of these methods the grain obtained is uniform throughout, monotonous and unduly prominent, while others more suceessful are trade secrets.

Whilst working at the Autotype Works at Enling in 1881, I had the good fortune to hit upon a method of giving the gelatine reliefs a graduated grain, whiol is quite novel and seems very efficient. It consists in sprinkling over the surface of the gelatine relief, while still wet and soft after development, a granular powder, suoh us fine sand, emery, or glass powder, previously coated with some grensy material, such as wax, paraffin, or stearine, to prevent its ultimate adherence to the gelatine. As the gelatine dries, the powder is drawn into it, and naturally sinks deepest into the darkest parts, where there is most gelatine; less into the half-tones, where there is leas gelatine ; and not at all in the lights, where there is no gelatine. In this way the surface of the gelatine image on the oopperplate is pitted all over, and takes a fine grauular testure, following exactly the lights and shades of the picture.

Were plain eand or omery used, it would etick to the gelatine and it would bo impossible to remove it. In the course of experiments at Enling, I found that these granular poomers could be coated with sufficient greasy or insulating material to enable them to be easily removed from the gelatine witiont in any way iuterfering with their grauular character. Y'araffin and wax answer well, but I have generally used stearine. Coccauut oil would probably do equally well.

The choice of granular materinl depends very muoh upon the kiad of grain required Graining sand of 160 holes to the inch gives a very clean open grain, rather too conrse for vory fine subjeots. Emery powder, 160 holes, gives also a good grain, but flatter, and not
so olean out as the sand. Oakey's glass powder No. 1 gives a delicate, clean-cut grain suitable for very fine work. On the whole for general purposes I prefer the grain given by Oakey's coarse flour emery well washed to remove all dust.

The washing is done by plaoing a quantity of the powder in a long glass jar, which is filled up with water; the powder is well stirred up and allowed to settle for a minute or two, till all the coarser grains are precipitated; the dirty water is poured off, and the process oontinued till the water remains fairly clear. The coarse flour emery requires about 20 washings of 1 to $1 \frac{1}{\frac{2}{2}}$ minutes ench to olear it; glass powder requires about 12 washings of 1 minute each; fine graining sand also requires several washings to take out the dust.

The powders washed as above are dried with heat in an iron or copper bowl, and when perfeotly dry and still hot are stearined by sibredding a little stearine into them and stirring well until it is melted and thoroughly incorporated with the powder. The pot is then taken of the fire, and the powder kept well stirred till cold. The grains should then be perfeotly separate, and to all appearnance the same ns before being stearined.

The proportion of steaxine is not of much oonsequence ; from 4 to 6 or 8 grains to the ounce of powder are suffioient. The coarse flour emery takes about 4 or 5 graing to the ounce; 160 holes sand, rather more.

The wasking of the granular powder is a very essential point in getting a clear sharp grain. I found that the dust oonfused the image in a very peculiar menner, and was very difficult to remove.

The graining powder is most conveniently applied with a small tin pepper-box, the lid of which is oovered with fine wire gauze, instead of the usual perforated plate. The powder is well spriukled nll over the image, and the plate is set aside to dry in a horizontal position, being left for some hours, in order that the bichromate in the film may thoroughly harden it. The loose powder is then brushed off with a stifish small paint-brush, and being returned to ite receptacle can be used over and over again. The plate in now placed in a dish of oold water, and the remaining powder is removed by vory gentle rubbing with a soft brush or the finger, till all feeling of grit has gone. The presence of powder will also be easily seen by refected light. The powder should oome away quite easily, and if it does not, more stearine must be added to it.

The plate is then well rinsed in oold water and gently brushed with a soft brush to remove all loose grains of powder, and set aside to dry. When dry, the margins are cleaned and the plate is ready to be electrotyped.

The plate should now show a fiucly-grained image in very low relief, and this image should us nearly as possible be an esact reproduotion of the original in depth of light and shade and general appearance, while thero should be sufficient gelatine to give an inage of the proper depth when slightly swollen in the electrotypiug bati.

Elcctrotyping.-The first thing to bo done is to give the gelatine a conducting surface by brushing it over with plumbago. This must be done very thoroughly, and the plumbago must be good; otherwise there may be difficulty iu getting a deposit of copper on the deep shadows. Gilt or silvered plumbago are useful; and it is a grod plan to facilitate the adberence of the plumbago by breathing on tho image. Where the shadows are very heavy, the relief may be rubbed over very lightly with a greasy pad; but this trentment is apt to give lat images by the grense preventing the slight rising of the gelative relief in the battery.

The form of battery I have found most useful for electrotyping these rcliefs is the single cell arrangement used in the Military Geographionl Institute at Vienna, and also at F'lorence. While on fullough I worked up the use of this battery, particularly as to the best material for the porous diaplragru, and found that leather many be udvantageously used to replace the paper parchment used at Vienua, which is easily liable to damage and not alwars procurable.

The battery consists of two wooden troughs fitting into one another. The inner has a porous bottom, and contains a ziuo or iron plate lying in dilute sulphurio acid; the outer contains a saturated solution of sulphate of copper, and in it is placed the plate bearing the gelatine relief. This is suitably connected with the zinc or iron plate in the inner trough above it, and receives a deposit of copper, which being removed whon of the proper thickness forms the $\mathrm{p}^{\text {rininting }}$ plate.

The inner trough is a tray with wooden sides about 4 inches deep. Over the bottom of it a piece of leather is stretched tightly and nailed dowa with copper uails. The edges of the leather and the corners of the trongl are painted over with elentrionl cement, so as to prevent leakage except by permeation through the lenther. For the etarting trough with zinc, I use kid stin, and for ordinary deposition with iron, sheep's skin. Along the onds of the trough, inside, are ledges about half an inch thiok for the zine or iron plates to rest on.

The outer trough is about 5 or 6 inches deep, and I prefer to malie it long enough to permit the plato bearing the relief to be passed underneath the inner trough without the latter being lifted up. This enables the state of denosition to be ensily examined at any time. The trough is best lined with lead, well pitched over ; but good oomenting with eleotrical cement nnswers woll for small troughs. The solution of sulphate of oopper oontained in the trough is kept at saturation by erystals of sulphate of copper placed in a perforated bos at one end of the trough. This bos should be lined with flannel or cotton oloth to provent dirt going into the trough.

The plate benring the gelntine relief is supported on a copperplate coated with eleotrical cement ou both sides, but furnished on the upper side with studs about I inch long, the points of which are kept bright in order to produce electrical contact with the under side
of the relief plate. One side of the supporting plate has a stout copper band about 8 inches long riveted to it and carrying at the other end a connecting serew.

In this manner the plate bearing the gelatine relief is left quite free, and can easily be removed for examination or cleaning, while the electrical contact is quite sufficient for all purposes.

Before starting a plate, the solution of sulphate of copper is carefully filtered into the outer trough. A zinc plate, about the same size as the plate to be copied, and having a copper band soldered to one side of it, having been amalgamated in the usual way, is wrapped up in thin cotton cloth and laid in its place in the iuner trough with kid skin bottom. All being ready, the supporting plate is laid in its place at the bottom of the outer trough, the plate bearing the black-leaded gelatine relief is laid upon it and just allowed to soak in the solution of sulphate of copper, while the inner trough with plate is placed in position and flled with the proper quantity of dilute sulphurio acid, containing one part of acid to 60 of water, so as to cover the zino to a depth of about one-fourth inch. The copper band attached to the zino is then fastened in the connecting clamp attached to the supporting plate in the lower trough, and the eleotrical oircuit being complete the deposition should begin at once.

All working well, the gelatine relief should be completely covered with copper in the course of an hour or two, and may then be changed into the ordinary depositing trough, whioh is exaotly the same thing, but with an iron plate instead of zino, and sulphuric acid one part to 40 of water. I generally allow the plate to remain in the zino battery all night, and then clange to the iron battery in the morning. While depositing, the plate is washed every morning to remove dirt; and if any lumpy nodules or other irregular deposits should form on the face of the deposited copper, they are removed by filing. The iron plate is washed, aud the acid renewed every other morning. As a rule, the deposition proceeds very evenly and regularly, at the rate of from $1 \frac{1}{2}$ to 2 ounces a day on a 10×8 plate; so that a plate of this size, weighing $1 \frac{1}{2} \mathrm{tb}$, takes from 12 to 18 days to deposit. The whole arrangement is exceedingly simple and easily worked by a native assistant. I find it a great improvement over the Smee's battery I formerly used.

When the deposited copper is sufficiently thick, the outer surface is smoothed with a rubber file, and the edges being filed round, the deposited plate can easily be removed from the relief plate. Any gelatine adhering to the plate is washed out, the edges are trimmed, and the surface beiug polished with a little of the finest washed emery, or oil-rubbed, is ready for printing.

These plates generally require a little brightening up of the high lights with a burnisher, and, if necessary, deep shadows may be brought out by rebiting, or worked up with a roulette. At Vienna tints are sometimes deepened by applying a mixture of sulphur and olive oil with a brush. If due care is taken throughout, the original and negative good, and the tissue fresh, very little retouching should be required.

Before priuting it is essential that the plates should be steel-faced, otherwise the fine parts will soon wear out.

Arrangements hare been made for working larger sized plates, and I hope to report further progress during the onsuing year. The work is very muoh facilitated by the ease with which we now obtain reversed negatives by means of a silvered glass mirror placed behind the lens; and the now lenses and apparatus I obtained from Messrs. Ross \& Co. while in England have proved very useful.

I have also given attention to other processes of photographio ongraving in which the image is obtained by biting. These methods are quicker and more economical than eleotrotyping, but require more skill. Some of my experiments have shown fair promise of suceess, and I hope to find a method that shall be as far as possible automatio and require little aid from the skilled engraver.

1'hotogrophiug on Copper.-An occasion having arisen when photographs of a drawing were required to be made on a copperplate as a guide to the engravers, I found a new way of photographing either line or hall-toue subjects on copper, which is simple and litely to be useful.

The copperplate being cleaned aud polished ready for engraving upon is dipped for a minute or two in a bath containing a ten per cent solution of bromide of copper; it is washed ond allowed to dry, then exposed to diffused light for a seoond or two under a reversed negative or under the drawing itself, if suitable, and developed with the ordinary ferrous-oxalate developer used for gelatine dry plates and made by adding one part of a saturated solution of ferrous sulphate to three parts of a saturated solution of neutral potassio oxalate. The image soon develops in red on a greenish. yellow ground. The plate is washed and the image fised in a weak solution of cyanide of potassium, which clears and brightens the yellow ground. The resulting images are of a rich brownish purple on a canary-coloured ground.

It is in some ways nu advantage to lightily silver the oopperplates before sensitising them. The conting of bromide of silver is more sensitive, and develops better. The silvered plates should, howerer, he fired with hyposulphite of soda.

Some of these plates, when etched with perchloride of iron, gave very distinct images, the perobloride attacking the shadows; but there is a difficulty in biting sufficiently deeply.

Gelatino-bromite plutes aud paper.-During the year I bave worked a good deal with the new gelatine dry plates, with a view to see whether they could be usefully employed in the office in supersession of the wet collodion process. With eome plates I have found no diffoulty in working through the hottest weather, but the images obtained are not so
olear ns with wet collodion; and I do not think that the gelatine would suit us so well as collodion, though it has many advantages in greater sensitiveness and convenience in manipulation.

Some of Morgan's argentio-gelatino bromide paper was obtained from England for trinal, with the idea that it might be useful for reproducing oadastral maps. I found that it might be used very well for taking negatives in the camera, but the density was insufficient for photo-transfer printing. The paper might very usefully be used for making direct negatives by contact from originals drawn on fine traoing-paper, but not with our present origiuals, drawn on thiok paper, and many of them dirty and stained. I drew the attention of the Meteorological Department to the paper as likely to be useful for the selfreoording instruments. It was tried in the Observatory at Alipore, and found to answer so well that it has been definitely adopted in preference to the old wased paper prooess. It saves a great deal of trouble and gives olearer resulte.

New Buildings.-A great doal of my time has been taken up during the year with the preparation of rough plans and drawings of the new buildings for the accommodation of the office, so very urgently required. A set of plans was made by Mr. E. J. Martin, the Government Arobitect, but they required considerable alterations, and there is still a good deal of work to be done in oonnection with the fittings and special appliances of a photographio offioe.

B
Comparative Staterrent of the Out-turn of 1881-82 with that of the previous year.

,	Obdinaty Wobe.				Cadastrat Mapg.			
	1st Octo. ber 1881 to soth September 1882	1st October 18so to soth September 1881.	Dillerence.	Diferonce in square inches.	1at Octo. ber 1881 to Sinh Beptomber 1882.	Ist Octoher If80 to 30い Sep. lember $18 \Sigma 1$.	Diffrence.	Difforenco in square inclues.
Originals...	1,200	001	+290"	4,061	4,001	+990
Negatives	1,849	1,278	+570	3,024	3,670	+48	\ldots
Ditto equnre inches	607,800	376,980	...'•	+ 280,930	2,789,292	2,741,770	+ $\mathbf{4 1 , 4 6 8}$
Pbotograpbic translers	1,818	1,879	+546	-..'.	9.655	8,762	-107
Ditto square inches ...	©00,264	391,803	+ 214,446	2,807,040	3,192,810	-385,77e
Ellver prinis	699	${ }^{858}$	-25,
Ditto square inohes	60,702	97,418	-37,020	\cdots',
Trangler to zinc (number of plates)	800	807	7	5,000	4,705	+203
Number of pulls	00,047	84,548	+14,601	100,000	127,424	-17,434
Ditto of printed sheuts (single)	125,218	225,078	-20,858	100,000	127,42.4	-17,434	...
Ditto ditto (combined) ...	107,320	20.44	-102,115	40,570	88,102	-33,623
Proots	1,988	027	+ 880"	4,753	4,723	+ 30
Transfers	1,089	800	+109	4,02]	4,760	+162	

C.

Statement showing the Amount and Value of the work done for other Departments and despatched between lst October 1881 and 30th September 1882.

Navise or Dbpantmbate.

Nitatement showing the Amount and Value of the work done for other Departments and despateked beticeen 1st October 1881 and 30th Scptember 1882—continued.

D.

Statement of Expenditure of the Photographic branch and of the Value of the work done and issucd during the survey year from 1st October 1881 to 30th September 1882.

Extract from the Narralive Report of J. B. N. Hennesgex, Esq., M.A., Deputy Superintendent, 1 st grade, in charge Head-Quarters Offices, Trigonometrical Branch, Dehra Dún, for 1881-82.

COMPDTING BRANCH.

The following oost table of work done in this Branch is similar to the oorrespondComputing Branoh. ing tables exhibited in the reports for previous years:-

Cost Tables in Rupees.

These percentages oall for little remark, being about the same as in previous yeare, excepting in the case of olass 6, which in the present return shows an average of about holf the ueual amount. It is also to be notioed that an additional olass, viz. 11, has been introduced for the first time, it having hitherto been inoluded in class 10-Miscellaneons. The average of the new olass is unavoidably approximate on the present occasion, for the subdivision was adopted only in June. The percentage, however, is now seen to be sufficiently large to make the change desirable.

The particulars of the work done, indicated in a general manner in the preoeding table, are given hereafter in suoh detail as appears dosirable.

Class 2.-Computations (in duplicate).

Southrn Trigon.-The simultaneous reduction was oontinued without interruption from the stages roported on last year as finished, and was ooncluded aatisfaotorily in due course. The following table states the 22 equations of condition, which may be followed with the help of the diagram, and the errors as given and as found after elimination. It will be seen that the residuals are very small.

SOUTHERN TRIGON.

Error Table.

Nore. - The units of this tuble aro-in side, the sevent h place of logarithms ; and in λ, L, and A, a second of arc.
The exhibite of this table assume the completion of the usual after-computations of triangles λ, L, and A, which are inoluded in the fullowing statement:-

The compound figure last mentioned presented some peculiar features. It was originally ground in the ordinary way as tico figures, i.e. a quadrilateral and a hexagon, of which ooly some triungles presented unusually large errors, amounting to over 6 inches; but it could be seen that the whole of these errors may be accounted for by assuming the diepleoement of a single ray at but one of the two stations common to the two figures. Moreover, these two stations were unavoidably ouly 3 th mile apart; and as the sites were subjeot to high wiuds while the drops for the plumb-liues were considerable, there was every reason to suppose that improved results would be secured by rejecting the ray in question. This was verified by actual computation, and the displaoment dotected; but the reduotion of a oompound figure of the kind, it will be found, presents some epecinl difficulties.

Obsroved Latitudes - The anount of progress has unavoidably been less than desirable, though quite commensurate with the working power available. On the one hand the mass of observations is considerable: there are 906 stars in all, and several pairs of these
have been observed at 117 stntions (inoluding revisite). On the other, the nature of the work has not hitherto admitted of employing more than one pair of computers: even these two were required for still more pressing computations, so that their servioes have been diverted from the latitudes for five monthe out of the past twelve. In faot, two computers have been on loan to field parties for three-fourths of the year.

Notwithstanding interruptions, sensible progress has been made. Having exhausted the information in all available oatalogues, (provisional) plaves and variables were adopted for the remaining 106 stars (epooh 1800), and from these the required sub-epochal values for years of observation were found. The facts of the plaoe-table, i.e. N. P. D., procession, secular variation, and proper motion, were then suitably abstracted for the whole of the 906 stars. This enabled the computers to enter on the next stage, i.e. finding the Intitude from each concluded zevith distance (or Z). In arranging for this end, every advantage will be taken of the components already computed by the field parties, as reduotion to apparent N. P. D. (or Δ), refraction, collimation, \&o., \&C. Though, however, these components are mostly forthooming, it is necessary that they should first be suitably combined before the suocessive values of Δ and Z can be oxhibited. This, with entries of results, comparison ngainst duplioate records, oorrection of mistakes disoovered, \&o., require great care and circumspeotion, which are not compatible with rapid execution. Notwithstanding, the required entries have been deduced and made for some 40 stations, and are now under comparison.

Besides foregoing, a table has been put in hand by which the adopted values of Δ (or provisional place) may be checked hereafter.

> N.-E. Quadrilateral.- North-East Longitudinal Series, Assam Valley Triangulation, and Ganges Riter Triangulation betceen Mirwapur and Chunar.

Voleme VII.-Various tables prepared for incorporation in the sections of this volume.
Computations for Colonel Tamer of acork in and around Gilgit.-Computed 448 secondary triangles; 310 deductions of latitudes, Inngitudes, and azimuths; and 110 deduotions of heights; 15 deductions of azimuth and side from given latitude and longitude; besides a variety of miscellaneous work in the way of examining angle books, preparing abstracts and synopses, \&c. (Occupied n pair of computers, $3 \frac{1}{2}$ months.)

Computations for Coloncl Branfll, Colonel Campbell, Dajors Rogers and Hill, in ronncction with the Mregui base line, and latitude and azimuth observalions, the Enstern Frontier Series and Burmah Party oporations, and the clectro-telegraphic longitute vork.The calculations, ©o., are of so very miscellaneous n character that it would be tedious to detail them. They ocoupied a pair of computers five months in all.

Incidental computations.-Couneoted chiefly with supplying of data called for by varions officers, including the calculation of 65 deductions of side and azimuth from given latitude and longitude (for Major Holdioh), the calculation of 26 denuctions of prinoipal latitudes and longitudes for Mr. Beverley, \&o., \&c. (Occupied a pair of computers half a month.)

The amount of nssistrace in computations nad otherwise necessarily required by field parties was considernble: it is approximntely indicated in foregoing. Notwithatnading this help, various field operations unavoidably remain to be reluced, including the measurod length of the Mergui base line.

> Class 3.-Accounts, Returns, Cornespondence.

As mentioned in last year's report, the designation of this class is more general than speoial, to avoid undesirable increase in the adopted number of classes. Briefly, a considerable portion of the work embraced in this olass is of a purely professional nature, presenting much variety in kind.

Class 4.-Surply.

Requisitions from over thirty offcers for data of various kiods have bean complied with. Amonget the officers so supplied were Major Bnileg, R.E., Superintoudent of Forest Surveys, and Mr. J. H. Fisher, in charge Provincial Gazetteer, North-West Provinoes. 1,135 despatebes of maps, charts, books, \&o., were made during the year.

Crass 5.—Press Copy.

Southern Trigon.-The compilation of Descriptions of Stations (Prinoipal) for publication has been gone on with so far as practicable. The nbstrnots of angles have been finally comparell and now stand complete. In the reduction of figures some further recomputation was necessary, and this has been done.

E/refroc-lomizimle, or Volume $I X$. - Certain portions of tabular matter have been transeribed nud compared; also the press cory as received has been examined generally.
$L_{\text {orifurle }}$ Vonpme, or: Volume X - Major G. Strahau prepared various dravings of Strange's Zenith Sector, and Colonol Camplbell wrote an nccount describing the instrument
and how to use it．These were examined and discussed．Subsequently，the drawings were placed in the hands of the engravers（Surveyor－General＇s Offioe，Calcutta），and of the letter－ press a few Provisional Prints were struck off in this offioe．

N．－E．Quadrilateral，Volumes VII and VIII．－Introduotions to seven of the sisteen series forming this Quadrilateral were reported last year as passed to pross：those to eight more have during the present year been completed，and oonsiderable progress las heen made with the only remaining introduction（viz．to the Assam Longitudinal Series）．The tables of non－circuit triangles and of the final figural adjustmente have been fully corapared． Vooabulary of native words prepared．Addeadum to Descriptions of Prinoipal Stations compared for 10 series．Rough draft prepared of section 19，volume VII，describing and comparing certain differences in details of processes adopted in the reductions of the several quadrilaterals．Volume VII completed iu all respects，and sent on to binder．

Synoptical Volume of Assam Longitudinal Sories．－Azinuth table oxtended to include work of 1876－78（wants recomparison）；Co－ordinate list extended so as to iuclude part of work of 1876－78（wants completion and comparison）．

Synoptical Vohume of the Gurvani Series．－Extended Co－ordinate list to include Ganges River Triangulntion between Mirzapur and Chunar．

Eastern Sind Series．－Partly abstracted，and compared observed angles and reduotion of figures．Prepared lettor－press of Eastern Sind Series，Preliminary Chart（eensons 1879－91）； this needs oomparison in part Prepared aud compared letter－press of Sehwan Series，Prelim－ inary Chart（seasou 1880－81）．

Assann Dalley Triangulution．－Compiling letter－press for Preliminary Chart of seasons 1876－78．

Bangkok Triangulution．－Prepared and oompared tabular portion of letter－press for Preliminary Chart．

Spirit－lecreled Pamphlet No．4，Southern India．－Examined generally and corrected orthography ；addendum prepared，giving a precis of the reduction by mivimum squares of the levels between Bombay，Karwar，and Madras；and the oorrections requirod by this reduction introduced into the press copy（wants comparison before publioation）．

Ronte Book，3rd clition．－Examined the additions and oorrections to former edition．
Miscellaneous．－Arranged（alphabetically；a list of names for Mussooree cemetery plan， and checked it against the iuscriptions．

Class 7．－Charts．

Final	．．．$\left\{\begin{array}{l}\text { Compared Calcutta Meridionnl Scrics and addendum to }\end{array}\right.$
	$\left\{\begin{array}{c}\text { Compared Assam Vall } \\ \text { Diito An } \\ \text { Eastern Sin }\end{array}\right.$
	Dito $\begin{aligned} & \text { Eastern } \\ & \text { Ditto } \\ & \text { Selman }\end{aligned}$

MLiscllaneous．－Assisted Colonel Branfill in plotting Preliminary Charts of Eastern Sind Series（1879－81）and Sohwan Series（1880－81）．Examined generally diagrams for level sheet No．82，and fair drawing to illustrate Pamphlet of Spirit－levels No．4，Southern India． Examined and correoted orthography in a list of names occurring in Atlas Reduction of sheet No．2，Dehra Dún survey．Exnmined ohart of portion of the North－East Longitudinal Series，prepared fcr Captain Harman＇s use．Esamined dolineation（on Preliminary Cbart of Pegu，Rangoon，and Const Series）of coast line along the Irrawaddy delta，and of the traverse from below Rangoon to connect the Krishna shoals with the triangulation．Compnred two charts，ehowing portions of the tringulation in Burma，prepared for the Marine Survey．Exnmined several diagrams for volume of Electro－Longitudinal Operations； Skeleton Chart of Principal Chains of Trinngles，and the frontispiece for volume VII． Entered correct values of Spirit－leveled and Railway Heights on several sheets of the Kattya－ war Survey for second edition．Exnmined Plan of the Mussooree cemetery．Prepared rough working－charts of Ganges River Trinngulation from Mirzapur to Chunar，and of two minor series emauating from tho Assam Valley Triangulation．

> Class 8.-Stations.

The increased percentage for this olass malces it desirable to give a few particulars as in the following table，indioating the annount of work anuunlly devolving on this office in carying out the important duty of protecting ow principal stations for the benefit of all future surveys ：the table also shows what has been dous in past years towards enabling the local officers to recognize the stations in question ：－

			mif：pricate（i．e．， FINALLY IISTOBED OP）LISIS．		Numaer of libts URNT OCT PROM THIS OFPICR DEA－ ing the yrid．		Nemper of Local Ofpicerg who mave－			$\begin{aligned} & \text { Number of bills audit- } \\ & \text { ed and passed. } \end{aligned}$		要 4 名	
$\begin{aligned} & 3 \\ & \vdots \\ & \frac{2}{3} \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$			\qquad Numhar of lists．	$\begin{aligned} & \text { Numbor } \\ & \text { or } \\ & \text { atations } \\ & \text { included. } \end{aligned}$	New．	Supplonell－ tary．	Reported during the rear．	Not reported during ino yenr．			宮		
3，172	838	917	310	3，40％			203	61	764	210	$\begin{gathered} \text { Ris. } \\ 3,4.35 \end{gathered}$	H\％． 4.9	About 800

Onder exisling orders, District Officers and Political Agents are authorized to expend for the proteotion of eaoh station a sum not exoeeding on on average Rs. 4 per annum; any outlay in exoess of this amount oannot be incurred by them without special authority from this offioe. The officers are also required to report annually on the oondition of the stations, and as a rule this duty is disoharged efficiently : on the present occesion it will be seen that there are 54* exceptions, or about 17 per cent.

Class 10.-Miscellaneous.

Volumes of the G. T. Survey.-Volume VII, pages examined, sorted, and despatohed to Caloutte for binding. Synoptical Volumes VII, X, XI, XLI, and XIII, distributed.

Examination papers.-Six sets prepared for examination of oandidates for Junior branoh of the Department, and the workings of four candidates examined.

Time observations.-Forts-two sets of observations to the sun (on 14 days) for time taken, aud reduoed in duplionte.

Esamined and reported on the Annual Report (MS.) of the Kattywar Party for 1880-81.

Examined and reported on Mr. Rendell's aooount of the orossing of the line of spiritlevels over the Hooghly by simultaneous observations of Tide heights on both banks.

Examined and reported on Major C. Strahan's form for the caloulation of Interpolated points.

Reported on (and oorrected in some cases) heights on oertain 5 -minute oompartments of India sent in by field parties.

Examined and reported on (1) Crellin's Traverse tables ; and (2) Mackesy's tables for the calculation of Barometrio heights.

Devised and prepared speoimen forms for reduction of Southern Trigon.
Cost table prepared for the several soales of survey on the Koshmir, the Kumaun, and Garhwal, the Dehra Dín, and the Jaunear-Bawar Survey operations.

Discussion of assimilation of certain office forms for the three branohes of the surver.
Esamined proposed symbols for maps.
Deduced Telegraphio longitudes of seven stations for oomparison with Geodetio.
Sot up stage at Mussooree Observatory for new large Anemometer, and mounted the instrument.

Mergui base line.-The preparations for this base line, mensured in 1881-82 under the supervision of Colonel Branfill, necessarily caused a considerable amouat of care and labour to this office in general. The apparatus had not been used for twelve years, so that the whole of the instruments required at least oleaning and adjusting, while several needed repairs; and other portions, as trestles, had mostly to be constructed anow for the occosion. It was also necessary to revive reoollections of the art, which, like others, does not improve with disuse; nor were the diffoulties diminished by the fact that the old base line native establishment, if not officere, bad of course become very scarce. In addition to the arrangements above briefly indicated, provision was also made, by preparation of suitable books, for the field records of the measurement.

Class 11.-Meteorology and General Sclence.

Metcorologiral Obsereations.-Taken at Delira twice on every day of the year, and at Mussooree during about seven months. The resulte for Dehra have been supplied month by month to the Meteorological Reporter to Government, North-Western Provinces and Oudh; and daily weather telegrams from Mussooree (for some seven months), as well as the anemograme for both Delira aud Mussooree, linve been supplied to the Meteorological Reporter to Government of India. The usual tables of monthly results and of the mean velocity of the winds at Debra are appended.

Enrlh trmperatures. - These observations are brielly introduced in the report for 1880-81, and further particulars ns to procedure would be redundant or out of place here. The series, moreover, has as yet been continued for only one and a half years, so that detailed disoussion

would be premature. It may, however, prove useful to give the monthly mean temperatures obtained, and these are acordingly exhibited in the following table:-

Mean Monthly Readings of Deep-sunk Earth Thernometers.

Ybal and Mortit.							Depths in feet of thermometer bulbs below murface of ground.					Thermometer in shade.
							$25 \cdot 0$	12•8	6.4	$8 \cdot 2$	$1 \cdot 1$	
1881.												
June ...	*.	'..	\cdots	'.	-."	\cdots	$79^{\circ} \mathrm{C} 515$	$74^{0 \cdot 9} 9$	800086	$85^{\circ} \mathrm{O} \cdot 68$	$88^{89} 10$	$87^{\circ} \cdot 18$
July ${ }^{\text {August }}$...	\ldots'	\cdots	\ldots	\ldots	$733^{\circ} \cdot 00$ $75^{\circ} 08$	$76^{6 \cdot} \cdot 77$ $77^{\circ} \cdot 88$	${ }_{81}^{810.01}$		$84^{\circ} 14$ 82.55	820.04 81.00
Sopteraber'	...	\ldots	\ldots	\ldots	$79^{\circ} \cdot 17$	$78^{\circ} \cdot 99$	$810 \cdot 24$	$89^{\circ} .40$	$888^{\circ} 19$	82' 188
Ootoler	\ldots	\ldots	$79^{\circ} \cdot 69$	$79^{\circ} \cdot 26$	810.93	$70^{\circ} \mathrm{077}$	77×181	$88^{\circ} 72$
November	\ldots	\ldots	\ldots	\ldots	$76^{\circ} \mathrm{C}$ 明	$77^{\circ} 71$	$75^{\circ} \cdot 80$	$72^{0} 920$	$67^{\circ}-81$	$75^{\circ} \mathrm{C} 24$
December	$70^{\circ} 71$	74080	$70^{\circ} \cdot 68$	65 ${ }^{\circ} \mathrm{6S}$	$60^{\circ} 72$	$71^{\circ} 19$
1882.												
Jnnuary	'..	\ldots	\cdots	!.	\ldots	\ldots	$75^{0.91}$	72.38	80^{-17}	1020.57	B90.01	AfP 77
February	\ldots	'.'	...	\ldots	$75^{0.19}$	710.70	$88^{\circ} \times 08$	$6^{60.31}$	E! $0^{0 \cdot 4}$	$06^{\circ} \cdot \mathbf{H 1}$
March'	...	\cdots	...	\cdots	740.52	70.47	$07^{-3.75}$	$67^{\circ} \cdot 01$	$8^{80 \cdot 60}$	81.988
April	...	-•	$77^{\circ} \cdot 11$	710.70	$72{ }^{0.20}$	$76^{\circ} 49$	$38^{\circ} \mathrm{O} \cdot \mathrm{R8}$	$8^{8} 8^{\circ} 78$
May	\cdots	\ldots	\cdots	\ldots	\ldots	\cdots	730.07 $74^{\circ} \cdot 15$	$7: 1{ }^{\circ} \cdot 97$ 75	$700^{\circ}+7$ 80.01	$80 \% 86$ $84^{\circ} \cdot 77$	$84^{\circ} 0.09$ 88.24	$818{ }^{\circ} 80.11$
July	\cdots	\ldots'.	...	\ldots	$74^{\circ} \cdot 31$	$75^{\circ} \cdot \mathbf{4 7}$	$80{ }^{0.78}$	$82^{0} \cdot 71$	83.48	$8^{10} 61$
August	.,''		$74^{\circ} 05$	$780 \cdot 20$	$81 \cdot 30$	88.14	$84^{\circ} \cdot 08$	$82^{0.40}$
Eeptember		$75^{0.69}$	$78^{\circ} \cdot 98$	810.88	$82^{3} \cdot 20$	620.89	$84^{\circ} \cdot 88$
Octolior	.	..'	\ldots	...	\ldots	\cdots	$70^{\circ} \mathrm{C} 14$	$78^{\circ} \mathrm{P} 02$	$80^{2 \cdot 10}$	$70^{\circ} \cdot 21$	$77^{7} \cdot 185$	$88^{3.17}$
November ${ }^{\text {c }}$	$760 \cdot 30$ 760.97	$77^{\circ} \mathrm{C}$. 64	$76^{\circ .78}$	${ }_{60} 710.14$	${ }_{6} 67 \cdot 9017$	$75^{\circ} \mathrm{O} .04$
December	**	\cdots	$76^{\circ} \cdot 37$	$74^{\circ} \mathrm{BH}$	$71^{\text {c/03 }}$	$60^{\circ} 14$	$62^{0} \cdot 17$	$73^{\circ} \cdot 36$

Notr.-The second places of decimala are purely arithmetical outcomes.
Contrasting to the following extent the Dehra results for 1882 with the means for Greenwich 1847-1873:-

	$\int_{\text {Delira (or }}^{188 \mathrm{D})} \text {.... }$	\ldots	Lat. ... Height...	$\begin{aligned} & 90^{\circ} \mathbf{1 9}^{\prime} \\ & 7^{\prime 8^{\circ}} 8^{\prime} \\ & 2,200^{\prime} \mathrm{ft} \end{aligned}$	$\begin{aligned} & \text { 18.47-187.3 (.. } \\ & \text { Greenwich (or G) } \ldots, \end{aligned}$					D-G.		
	Minimum.	Maxirsum.		Brage.	Minimmm.		Maximumo.		Range.	Minimum.	Maximum.	Hange.
$0 \cdot 4$	Feb. ... $06^{\circ} 006$	Sept.	... $811^{\circ} \cdot 32$	$15^{\circ} 28$ \{	Helh March		Aug.	[.. $69^{\circ} \mathrm{Ca}$	$14^{0} \cdot 85$	$21^{\circ} 26$	$21^{\circ} 67$	$00^{\circ} .41$
$12 \cdot 8$	Marcl) ... $70^{\circ} \cdot 174$	Sept. Oet.		$\left.8^{0} 65\right\}$	Marcl	.. $44^{40.47}$ $\cdots . .46^{\circ}+3$... $655^{\circ} \mathrm{7} 7$	$8^{\circ} 34$	$24^{00} 04$	$23^{\circ} 25$	- $0^{0.79}$
$25 \cdot 6$	May ... $\mathbf{3}^{\text {a }} 07\{$	Nov.	-.. $76^{\circ} 98$	$2^{0} 42\{$	Nry			... $\mathrm{E} 2 \times \cdot 2 \mathrm{E}$	$3^{\circ} .27$	23 ${ }^{\circ} 02$	$24^{8 \cdot 17}$	$-0^{\circ} \mathrm{B}$

So far as it goes, the result is curious. It may be added that the two greater depthe at Dehra indicate lower maximum temperatures in 1882 than in 1881.

Actinometry.-The necessity for this work, and the eligibility of certan localities in India as stations of observation, are now so fully recognised, that the Secretary of State, co-operating with the Solar Pbysics Committee, South Kensiugton, has sent out Sergeant Rowland, R.E., in order that he may be instructed to take a series of observations, extending over at least two years, at Leh, in Kasbmir. Sergeant Rowland landed in India on 1st November 1882, so that it is naticipating events to allude to him before next report. The allusion, however, is necessary in order to explain briefly my connection with notinometry, and that the Meteorological Reporter to Government, H. F. Blanford, Esq., F.R.S., has found it oonvenient to place the Sergeant under my orders here pending his departure to Leh.

Some 15 years ago the Royal Society placed certain instruments suited for high altitude at my disposnl, for use in my leisure hours, including two of Hodgkinson's actinometers. I comrnenced using these in 1860 at Mussooree, where the brillinnt weather, especially in autumn, admits of excellent work. Subsequent observations with these instruments, and receutly with a Stewart's notinometer, were made from time to time and published in the
 Proceedings of the Royal Socicty," together with my discussions of the results and earnest representations that the most important work of actinometry should be vigorously prosecuted. The work performed hy "a sunbeam," at any rato on this globe, from "propelling n locomotive" to governing the commonert erents of life, is of vital importance to us all; nad it is certainiy a matter for nstonishment that one of the most powerful of solar forces, radiation, should remain so littlo measured as it is.

In consequence ol these actinometric observations, I have nequired familiarity with the work, which at first wns all done entirely in leisure hours; but as the subject became more attractive and appreciated, it was necessary to obtain some help from my assistants, and bence to show, as bas been done in the cost talle, the percentage due to this, as well as to kindred scientific duties in which the office is called on to co-operate. My opportunities for using the actinometer are necessarily limited to the fine weather which may occur during my residence at Musenoree in summer. The work is still done largely in leisure hours, but the opportunities are only fow in number under the circumstances. The results, however, help to indionte what should and may be done, and are likely to pruve useful guides. Apart from
this, the proceedings of the Royal Society also show what faots have been elioitod, but their repetition here would be out of place. The aotinometer was used a ferr days last summer and again in autumn; but I have had no leisure as yet to disouss the results.

Solar ceclipse, 1882, May 16-17.-This happened at Mussooree to the considerable extent of about eight digits. It ocourred to me that with the help of a continuous actinometrical series an attempt may be made to measure variations of radiation in different parts of the sun's surface. The project was oarried out, but the sky and sun were oovered with light olouds throughout, so that the results are vitiated. The negatives taken with the photo. heliograph at Dehra present a oomplete and interesting series.

Exploration.-After an absence from India of about three years, explorer M-S- returned with a valuable traverse of various routes in and around Badakhshan. His journal and itinerary were arranged and translated in this offioe, and passed on for printing orders. Under the oircumstnnces, a desoription is unneoessary here. The sketch map illustrating these travels was taken from a more oomprehensive oompilation prepared by Colonel Tauner: the sketch was examined and made consistent with the translation on whioh it depended.

TYPOGRAPHIC BRANCH.

The usual table showing the work annually performed by this branoh during the past five years is given below, the unit (a page of foolsoap) being the same throughout :-

				1577-79.	1888-79.	1870-80.	1880-81.	1891.32.
Pages composed	\cdots	\cdots	\cdots	2,050	1,844	1,421	1,363	1,283
" printed	'.'	"•	.	630,894	690,043	494,136	480,672	471,616

An analysis of the pages oomposed furniehes the following :-

PHOTOZINCOGRAPHIC BRANCH.
The following are the partioulars of the work esecuted by the Photozincographing Branch during the year:-

Maps.

Sudjects.	When publisbed.		Number of parts.	Number of sheet printed.
Index to the Gnzerat Surrey	Jenuary	1882	1	495
The Russo-Persion Frontier	-		1	156
Dehra Dún Cemetery \quad... ${ }^{\text {a }}$... \ldots	February	"	1	22
Kumaon and Garhwal forest map, shect No. XLVI (for Forest Departinent)	"	"	1	65 109
Spirit-leveled heights, sheet No. 82 Kumaon and Garbwal forest map, sheet ${ }^{\text {a }}$ No. XLIV ${ }^{\text {a }}$ (for Forest	"	"	1	109
Ditto ditto, No. LXII (Department) ...	"	",	1	68 78
Ditto ditto, No.LX (ditto) ...	,	"	1	73
Ditto ditto, No. XII (ditto) ...	,	,"	1	67
Reserved forcsts, Bamunpokri (for Forest Department) ...	"	"	1	95
Kumaon and Garhwal forest map, sheet No. LXl (fur Forest	March	.,	1	67
Ditto ditto, No. LXVII (ditto) ...	"	"	1	70
Cutch Survey, sheets Nos. 3, 4, 10, and 11 ...	"	"	1	135
Ditto, sheet No. 16	"	"	1	141
Trans-frontier map No. 9, 2nd edilion		"	1	136
Guzerat Survey, shect No. 17	April	"	1	140
CutehSurvey, \quad " No. 13 ...		"	1	139
Ditto, \#No. 14 ...	May	"	1	130
Guzerat Survey, "No. 33 . ${ }^{\text {a }}$	"	"	1	180
Ditto, \quad N No. 33, section 1 ..	"	",	1	85
	,	",	$\underline{1}$	194
Russian Turkestan, "No. 9 (for Foreign_Ofice) \quad..	",	"	2	32
Guzerat Survey, ", No. 77 ...		"	1	206
Ditto, \quad N No. 50, section 1 (Dang Forests)	June	"	1	95
Ditto, "No.49, " 5 (ditto)	",	"	1	115
Ditto, "No.49, " \quad (${ }^{\text {(}}$ (ditto	,	"	1	95
	"	"	1	86
Kohat Survey, plane-table, aections Nos, 1, 2, 3, 4, 5, 6, and two unnumbered soctions	"	"	8	1,069
Map of Mussooree and Landour (for North-Western Provinces Gazettecr)	July	"	1	714
Alexandria Harbour, plan of	July	"	1	80
Northern Waziristan ...		"	1	202
Bouthern ditto ...		,	1	278
Turkistan map, sheet No. 1 (provisional prints) ...	"	"	1	30
Ditto, "No. 3 (ditto)		"	1	28
Ditto, "No.4 (ditto)	August	"	1	
Guzerat Survey, sheet No.33, section 3		"	1	90
Mussooree Cemetery ...	September	",		67
Total			103	13,471

In addition to the foregoing, 460 blue prints and 726 silver prints (146 subjects) were prepared for the use of executive officers:-

Charts.

Subjact.	When published.		Number of parts.	Number of copice printed.
Budhon Mcridional Series, final Chart illustrating triangulation in Kattywar, degree No. IX Kumnon and Gnrhwal forest triangulation, shoet No. III (for Forest Department) The Malabar Minor Series, season 1879.80 Karara Meridional Scries, final Reduction Chart of the Budbon Meridional Scries, final Eastern Frontier Series, season 1890-81, preliminary Hurilnong Meridional Sories, Gnal Calcuitn Meridioual Scries, final Chendrar Meridional Series, Ginal Eastern Sind Series, season 1879-81, preliminary ... Eastern Frontier Serics, secoudary triangulation to Bangrow, season 1879.80, preliminary Western Const of Burna, shect No. 1 (for Mfarino Survey) Ditto ditto, No. $2 \boldsymbol{1}$ ditto Northern Afghanistan Schwan Minor Series, senson 1̈g80-81, prëliminary … Burmala Triangulation, Pegu, Rangoon, and Coast, showing also the traverso to the Krishan Shoals, ecasons 1978-80, preliminary Redaction Chert of the Jodhpar Meridional Series, $\neq \ddot{\text { Gal }}$	October	1881	1	407
			1	20
		1882	1	56
			1	69
	March		1	405
			$\stackrel{\rightharpoonup}{1}$	348
	April	",	1	64
	May	",	1	439
	,	"	1	408
			1	355
	August	"	1	${ }^{67}$
		"	1	65
	September	"	1	50
	Starab	"	1	50
	"	",	4	450
	"	"	1	69
		\cdots	1	88
	",	"	1	78
		21	3,486

Diagrams.

The total number of negatives taken is 885 , the number of ohromo-carbon prints 1,089 , and the number of transfers to zino 189.

Contrasting the work performed since 1877-78, we have-

Y ${ }_{\text {batig }}$				Maps.	Blue prints.	Silver prints,	Charts.	Dingrams.	Forms, \&e.
1877-7*	\ldots	\cdots	\cdots	12,481	195	426	4,531	4.877	23,736
1878-79	20.229	1,394	353	2.642	2,603	20,070
1879-80)	15,100	588	1,021	3,821	2,271	17,909
1880-81	15,659	414	52	1,886	3,367	19,508
1881-82		13,471	460	726	3,486	4,789	24,987

An abstract of the work exeouted during the past five years stands thus-

The money aatually realized and oredited to Government from sales of maps, \&o., duriug the year is Rs. 743-10.10.

DRAWING BRANCH.

The following tables exhibit the work performed in this branob:-

Degcription of Work.	Numpri of Simets on Diagrasa.		Senle, one inch $=$ miles.	Rbyarig.
	Finished.	In lund.		
Final Charts.				
13rahmaputra Series		1	4	
East Calcutta Longitudinal Series	1	1	4	
Eastern Frontipr Series -..	I	1	4	$\} \begin{aligned} & \text { For reduction by } \\ & \text { photozinco. }\end{aligned}$
Calcutta Meridional Series	1	4	$\} \begin{aligned} & \text { photozinco- } \\ & \text { graphy. }\end{aligned}$
Ganges River Triangulation, for incorporation in Gurmani Series	1	\ldots	4	
Prcliminary Numerical Charts.				
Assnm Valley Triangulation, seasons 1876-78	2^{*}'	4	
Fastern Sidd Series, sensons 1879-81	1*	4	For photozinco-
Selman Minor Series, season 1880-81 ...	1	\cdots	4	grapliy.
Gileit Trinneulation....	1	8	For oflice record.
Burma Cosst Line Triangulation, secondary, seasons 1878-80	1	$\ldots .$.	4	For photozinco graphy

[^37]

The preceding tables of the Drawing and Photozincographing branohes present various points of general interest; a few of these are selected for brief notice :-

The Camera as an aid to the draftsman.-Provided the Field Executive and the Photographio Officer are able to act in concert, there can be no question of the enormous help the latter may afford the former in compilations, changes of scale, and the ability to recognise at once what details from a large sonle map may be ndopted without orowding in the reduotion. In fact, unless the operation required be so trivinl that it may be put out of consideration altogether, the advantages of the camera over the pantagraph are so obvious ns to need no recommendation. That these advantages continue to be appreciated appears from the number of silver prints taken, amounting to 726.

Adritional prints of maps already publishecl.-These appronohed to 4,000 , showing the maintained demand for publications of former years.

Prints, urgent.-Such as Russo-Persian frontier, Alexandria barbour, Russian Turkestad, Hill States, \&e. Yhotozincography still holds its own, especinlly in supplying such pressing wants which it oan meet with celerity and neatness not as yet otherwise equalled, notwithstauding that 24 years have elapsed since the process was diecovered.

Locrll- Λ_{8} Dehra cemetery, Mussooree cemetery, the former surveyed by a drafteman from this office, and the latter by Major J. Wilmer during recess: these maps have already been found very useful, nond similar delineations would, no doubt, be valued at other stations, where opportuvity for making them, it is hoped, may occeur.

Spirit-leceled height charts.-Though more pressing worls bas interrupted the publication of those valuable records of work, done in and out of the Depart ment, there are full four sheets in hand, besides that data for others have been collected to a cortain extent in several distriots in Lengal.

Various.-Kohat survey, Northern and Southern Waziristan, Mussooree and Landour for Gnzetteer, a neat out-turn from old negativen, sletches of Lower Dawar Valleg, Khaisor pass, and Waziristan defie, Astor, and Gilgit, ©c., \&o.

Forest Drpartment.-The maps, 17 in number, and 1 chart, were all drawn, as usual, in the Forest Office, but published in the Survey Photozincographing press.

Charts and Maps. - Burmn Western Coast for Marine Survey: Panja and Dardistan, Burma coast triangulation and traverse to Krishna Shoals, \&o., \&c.

Turkestan.-The compilation not having ns yet been published, detailed notice would be premature. It may, however, be mentioued that the present will be the sixth edition of this map; that it has been brought up to date, and compiled, like its predecessors, under directious from the Surveyor-General.

CORRESPONDENCE AND STORES．

The year＇s correspondence is represented by 2,244 letters and office memoranda．Of instruments，\＆c．，received and despatched，there were－

Instruments，despatched	\ldots	\ldots	\ldots	\ldots	...	464
Ditto reccived	\ldots	\ldots	\ldots	\ldots	\ldots	399
Stores，articles received	\ldots	\ldots	\ldots	\ldots	\ldots	416
Ditto \quad despatched	\ldots	\ldots	\ldots	\ldots	509	

presenting a total of 246 parcels and paokages reoeived and of 93 paokeges issued．The principal ocoasions of issue and receipt occurred in connection with the measurfinent of the Mergui base line．

SOLAR PHOTOGRAPHY．

Mr．L．H．Clarke，Surveyor，2nd grade，has continued to work as Solar Photographer， with Mr．C．F．Gutbrie as his assistant．The working faots for the year are given in the subjoined table：－

1881－82．				No．of Dats．				No．of Negatifbe．						NOMBER OFWORMER DATBWHENSOLARPHENOMENAWEME－	
				気	Failures．			Solar Phenomena．					$\begin{aligned} & \text { すig } \\ & \text { Ei } \end{aligned}$		
							$\underset{\text { 品 }}{\substack{\text {. }}}$				$\begin{aligned} & \dot{0} \\ & . \\ & \hline \end{aligned}$	$\begin{gathered} \dot{\Phi} \\ \stackrel{\text { B. }}{\circ} \end{gathered}$		－	萝
Oetoler			\cdots	${ }_{29} 18$		．．．．．．	319	${ }_{50} 0$	－．．．．	\cdots	．．．．．．	20	110	91	．．．．．
Novemhor	．．．．	．．．．	\cdots	8	1	\ldots	91	97	．．．．．．．	…．．．	…．．．	20	123	30	．．．．．．．
January		\cdots	\cdots	26	${ }^{5}$	…．．	92	69	\ldots	…．．	…．．	19	89	26	．．．．．．
Pebuary	\cdots	\cdots	\cdots	${ }_{31}^{27}$	1	\ldots	$\stackrel{.8}{981}$	${ }_{88}{ }_{8}$	\ldots	．．．．．．	．．．．．．	${ }_{25}^{20}$	111	$\stackrel{27}{31}$	．．．．．．
April	．．．	．．．	\ldots	30	\ldots	…．．．	919	92	…．．．	……	……	$4{ }^{3}$	117	${ }^{3010}$	．．．．．．
Muy	．．．	\ldots	\ldots	31 27		．．．．．	${ }_{91}^{31}$	88	…．．	．．．．．．	．．．．．．	29 17	110	31	．．．．．．
Jund	\ldots	．．．	\ldots	${ }_{20}^{27}$	11	\ldots	${ }_{91}^{919}$	${ }_{47}^{74}$	\ldots	．．．．．．．	…．．．	${ }_{8}^{17}$	${ }_{5} 91$	20	．．．．．
Auginst	\cdots	．．．	\cdots	19	18	\cdots	31 30	52	．．．．．	${ }_{8}$	．．．．．．	17	73	19	．．．．
Septomber	．．．	．．．	．．．	27	8	．．．${ }^{\text {．}}$	30	75	．．．．．	．．．．．	．．．．．	22	97	27	
			．．．	929	37	\ldots	305	900	．．．．．．	3		257	1，160	923	．．．．．

This table shows that during the period of 365 days the sun was photographed on 328 days；that 903 negatives wore taken，of which only three exhibited faoulse alone，while the others（ 900 ）showed both spots and facule．

It will niso be seen that 257 runs were taken．Theso runs are quite useless for this particular instrument as it stands．A run is intended to exhibit the acouracy of instrumental adjusting，nad the exhibit is true only if no telesoopio shift in deolination occurs in the instrument between taking the two images．But the deolination clamp of this instrument is faulty in design and weak in construction；nor can it be remedied without a breai of some days in the series of negatives，for whioh there really is no justifiontion．Thus the pernicious shift oocurs when least expected，and the runs then show instrumental ertors which in reality do not exist．In faot the adjustments are always maintained in perfeot order．This \bar{I} never omit to state in my weekly extrnots from the diary sent to the Solar Physics Committee．It follows from what has been said that the runs are even worse than useless，for they may mislead，unless the caution in the diary be attended to． I have no cloubt that the runs，as the instrument stands，should be discontinued，and I have urged this more than once without eliciting any reply from Mr．Lockyer，so that the runs continue to be taken．The instrumental adjustments are examined daily．

The following percentages relate to daily visibility of the sun and presence of features， i．e．spots and faculo：－

Contrasting the percentages of number of daje of iuvisibility above given with those furnished by the Astronomer Royal's annual reports, we have-

Tear.	At Debra, year euding soth Oetober.	At Greenwich, year ending May.
1880.81 ...	15	60
1881-82...	10	45

So that on an average, from above, for one day of invisibility at Dehra about four occur apparently at Greonwioh. In view of the gaps thus caused in the Greenwich series, the Astronomer Royal, in his report dated 20th May 1882, remarks :-" As regards solar photography, the value of our results would be very greatly incrensed if the gaps in the Greeuwich series were filled up by the help of the photographs takeu in India and elsowhere under the nuspices of the Solar Physics Committee, so that the areas and positious of sun spots and facule should be given for every dny."

The photographs at Dehra are, and have always been, taken on every day of the year, inciudiny Sundrys, when the sun is visible: at Greenwich no negatives apparently were talken ou Sundays until the beginning of September 1881.

Solinr activity, as indicated by the preseuce of spots and facula, has been enormous during the year uuder report. No attenpt is made here to find the positions and magnitudes of these features, as it is intended that this worts should be done in Eugland, so that weekly batches of my uegatives are sent home for the purpose by the mail; and as now that the Dehra negatives are to be placed (as I an recently iuformed) at the Astronomer Royal's dispusal, early publication with his own results may be expected.

A rare exhibit of sun spots ocourred in 1882-April 13 to 26 -the Dehra negatives of which were fortunately obtained complete without a lirenk. lf, to distinguish between the two halves of the sun, we denote the visible half by carth. ficer' and call the other half recerve-face, I think it will be found that the majority of spots, Dot insiguificant, burst out (or occur) on the latter face, so that their first appearance to us is on the sun's edge. Now whether earth-face or reverse-face spote are most potent in produoing terrestrial effects can hardly be inferred from magnitudes alone, whioh may possibly continue to be visibly great for a time after the force which caused them has passed its maximum. Anyhow, e distinction between the two kiuds of spote appears desirable. I therefore notice of the oulburst or exhibit in question that, regarding them as three groups, numbered from enst to west, No. 1 was a reverse.face group, and somewhat the largest; No. 2 was insignifcnut as n reverseface group, but after considerable progress across (with) the earth-face it burst out and grew prodigiously, until it almost rivalled No. 1, besides that a relative displncement happened nyparently between the two: the behaviour of No. 3 was sonsewhat similar to that of No. 2, but on a vastly sunller scale. Thus Nos. 1 nad 2 present very remarknble groups of the two kinds of spots indicnted, the former being a reverse-face and the latter essentially an earth-Ince group; and this rare combination suggeste enquiry ns to relation in time between these spots and (at lenst) the magnetic disturbances which nre known to have occurred in their presence. In addition to the negatives taken, 879 silver prints were made from them. The negatives and prints have been regularly despatohed weekly to the India ()ffice.

The secondary magnifier for the old photo-lielingraph, for enlarging the sun's image from 4 to 8 inches, wns received during last nonsoons, when the weather was too unsettled to admit of substituting the new for the old tube without grent risk of brenk in contimuity of series. This substitution was effected later on, and 8 -inch vegatives taken until the isth Decenber 18•2, when, however, in accordance with a letter from General Strachey to thio Surreyor-General, reversion to 4 -inch negatives (with the old instrument) was effected. Negatives of the Intter size are intended lor the Astrouomer Koynl.

The new large photo heliograpla for 12 -iuch vegatives came to hand safely iu the end of last July, when it was set up for the purpose of ascertaining its dimensions exactly, in view of constructiog a suitable building and ilome for its reception. This necessary olbservatory is now being pushed on with the utmost vigour, and will, I hope, shon be dinished. I much regret that its completion should have been delayed by circumsinaces beyond my control.

The sunshine recorder contimues to act efficiently; tho much so far evidence of opportunities when sum photigraphs may be taken, for the recorder may declare the sun tu be present whea for rurferses of photography he is practically invisible.
(119)
Monthly Meteorological Results taken from the Register hept at the Head-Quarters Office, Trigonometrieal Branch, Survery of Iudia, Drhra Dunn.

Nots. -The height of the butometer cistern above mean seu-level at Kurmeher is $2.298 \cdot+1$ feet.

Mean Felocity in Miles of the Winds which blew at Dehra Dün during the tooelve months of 1881-82 for each Howr of the Day.

Read the General Report on the Operations of the Survey of India during the year 1881-82, submitted with the letter from the Officiating Surveyor General of India, No. 108t of the 17th April 1883.

RESOLUTION.

Following the order observed in reports of previous years, the first chapter of the Report deals with the triangulation work of the year. The chain of principal triangles, known as the Eastern Frontier series, which in previous years had been carried from Assam through Arakan and British Burma into Tenasserim, was completed: thus was bronght to a close the principal triangulation of all India on the lines marked out in 1830 by Colonel Ererest. Opportunity is taken of this fact by the Surveyor General to give an interesting listory of the undertaking, from its inception almost singlehanded by Major Lambton in the first rear of the century. The maps accompanying this section well illustrate the principles on which this great work has been built up. As regards the secondary triangulation still to be done, the Surveyor Gencral reports that a great deal is required on the coast lines to furnish fixed points for the marine surveys, and in localities in the interior at a distance from the nearest principal chains, where data may be requirel for topographical purposes. It is also wanted outside the limits of India proper on the North-Eastern Frontier to furnish a basis for the geography of Upper Burma, and southwards in the direction of Singapore.
2. The next chapter deals with topography. Thirteen topographical parties have carried on their regular work in continuation of that of last jear, and chicfly in the same provinces. The parties were thus distributed:-three in Rajputana and Central India, four in the Bombay Presidency, and the remaining six in Assam, Mysore, Kohat, Beluchistan, Mecrut, and on the Hooghly river. Following the above order, the work of each party may be briefly noticed. The party employed in Rajputana worked for the most part in the Jodhpore State and completed an arca of $\overline{6}, 611$ square miles. It has now been transferred to British Burma, and the part of country remaining to be surveyed has been made over to the Gwalior and Central India Survey party for completion. This latter party survojed during the year the three Rajput Statrs of Marwar (Jodhpore), Meywar (Oodeypore), and Sirohi, embracing an area of 2,440 square miles, of which 460 square m les are described as being "about as difficult and intricate as could well be found." The work of the Bhopal and Malwa party fell chictly in the territories of Banswarra, Oodeypore, l'ertabgarh, and Dangarpur, most of which is said to be very hilly, wild, and intricate country. In addition to the standard scale of topography, two cilies-Banswarra and Jaora-were surveyed on the scale of 6 inches $=1$ mile; the total area surveyed amounted to about 1,096 square miles. The greater part of the party has now been transferred to Mirzapur to complete the topography of that district which is required in comnection with tho cadastral survey operations now in progress there, and the completion of the survey of Malwa has been assigned to the Khandesh parly.
3. The four Bombay parties were respectively employed in Guzerat, Khandesh, Cuteh, and the Southern Collectozates of the Deccau. In Guzerat four descriptions of work were carried on:-
(i) Tho ordinary topogriphical survey of Native States, cxecuted on the 2 inch scale and published on the 1 -inch scale.
(ii) The preparation of a scries of maps on the 2 -inch scale, comprising British territory in detail, and foreign territory in skeleton; and for the former utilizing the maps of the Bombay revenue and settlement surveys as far as practicable.
(iii) The 4-inch scale of the Dang Forests.
(iv) The survey of the city, cantonment and environs of Surat on the 12 -inch scale.
This party has done very gona work during the yerr, anl has now brought the total surveged area of the distri it up to abjut 15 , (i8j square mile es, leaving about 14,850 square miles (or about hilf thadistrict) yet to be completed. The Klaandesh purty surveyel an are of $1,55 \mathrm{~b}$ squure miles out of the 2,650 square miles which remained for completion at the close of the previous year, thus leaving only another seaso:'s work for the party. The ares surveyed by the Decoan party includes a portion (130 square miles) of the Nizam's Dominions. This portion hat to bs surveyell, as there are no mins of the tract forth. ooming in the records of the Hyderabad survey. The Cutch survey was conducted in a similar manner to that of last year.
4. Of the other six topographical parties, the Assam one was emploged in surveying the lower spurs of the Tipperah Hills rumning northwards past the British boundury into the plains of Sylhet, as woll as the group of low hills which lie between Fenchuganj and the Manu River. These tracts are now becoming very valuable, as they are being takea up and opened for tea cultivation. In Mysore the party completed an area of 4,226 square miles on the scale of 1 incl to 1 mile. The Kohat party surveyed some very intriente ground lying in the upper valleys of the Kolat and Teri rivers, and also the Surdar and Lawaghur Hills with the low lying plains at their foot on the west of the Bannu District; and the Beluchistan party did a fair amount of work, chiclly in the country lying between Quetta and Khelat.

Tho chicf work of the North-Western Provinces party was to survey the Meerut and Bulandshahr Districts on the 2 -inch scale. The riverain tract along the Ganges and the Jumna in Bulandshalir was, however, surveyed on the larger scale of 4 inches $=1$ mile. The survey of the Π \#oghly River, with a strip on each bank varying from a quarter of a mile to one mile and upwards, was commenced during the year. A reliable survey of the river has long been wanted, and it is now being carried on pari passu with a survey of the bed of the river now in progress under the orders of the Port Commissioners. The survey is to be conducted on two seales. From Kanchrapara, a stition on the Eastern Bengal Railway, down to Atchipore it is to bo on the scale of 16 inches to the mile, and from Atclipore to the sca on the 6 -inch scale.
5. The Government of Inlia notices with satisfaction that the triangulation has in each case been kept well in advauce of the topographical work.
6. There were two mavzatonr or village survey purties employed during the year under review-one in the Punjab and the other in Bombay. The Punjab party was engaged on the 4 -inch seale of
(a) Pargana Lsial, in Dera Ismail Khan.
(b) Parganz Sinanwan (Chal portion) in Muzufargarl.
(c) Kala Chitta Pahar, in Rawalpindi (for the use of the Forest Department).
The total area surveged was 1,861 squaro miles.
The Bombay party was enzaged in the Thana (Konkan) District. The larger scale of 4 inches $=1$ mile was adopted instead of the 2 -inch seale, in accorlance with a letter from the Home Department, No. 830F., dated the 20th September 1831, on the ground that maps on the lesser scale are insufficient for the administration of the forests which corer large tracts in the Thiana District. It was, however, agreed that the Forest Dopartment of Bombay slould be charged with the additional cost of the more expensive survey on the larger вcale.
7. Cadastral or field survers werc conducted ly six parties-two in tho North-Western Provinces, three in Britigh Burma, and one in Sylhet.

The Mirzapur party surreged 750 square miles on the seale of 16 inches to the mile. With a view to effect a large reduction in the usual cost of proparing the record of rights, the experiment of allowing the surveyors to write
up the lihasra (i.e., the return in which the particulars ahout each field are entered) at the time of the survey of the fiedds, was undertaken hy Colonel Anderson at the request of the Board of Reremue. The results of the experiment, so far as it has gone, is believed to be highly satisfactory. The second North-Western Provinces party completed the Ghazipur District, and continued work in Ballia during the season.
8. The three Burma parties were employed respectively in Ianthawaldy, Bassein, and Tharrawaddy. The outhurn of work in this Provinee has been very satisfactory, the total area surveyed being 3,513 square miles. 'Ithe Government of India regrets to observe the unfarourable opinion expressed as to the merits of Burman survegors. Thoarl their work is good in quality, they are said to be very inferior to the ILindustani surverors in rupility of execution, and to work in a half-hearted way with a sole cye to cmployment in some other Department.
9. In A sam a small party, spesially organised, has heen engaged on the cadastral survey of selected villages in thre parts of the Sythet District, to test the accuacy of the mohahom maps of the district which were prepared by the civil anthorities in 1802; sixteen photozineographed sheets of the work done by this party have been suhmittel to the Chief Commissioner of Assam, and the Government of Iodia awaits the final report on the result of the testing.
10. The future employment of the cadastral partics which have been organised in the North-Western Provinces and in Burmn, with great trouble and expense, has for some time past leen under the consideration of the Government of India. A programme is now being drawn up in commonication with Local Governments which, it is expected, will meet the requirements of the latter for the next ten years, and provide the Department with ample work for that period.
11. The surver of the Darjeeling District was undertaken in consequence of certain errors in the old maps having been brought to notice by the late Captain חarman's party when it was surveying new boundary lines and re-laying old ones. This has eventually involsed the re-survey of the whole of the Hill Tracts west of the Teesta river. It is interesting to notice, in conncetion with this surver, the discovery made by Captain Harman, that the mountain which has hitherto been pointed out as Mount Erevest from the neighbourhood of Darjecling, is not that mountain ; the true Mount Everest being inmediately to the left (or south) of the peak which gencrally passes for it. The Government of India regrets to learu the recent death, when ou furlough, of Captain ILarman, an officer of much ability and energy.
12. The sections under the head of Geography, Tidal and Levelling Operations and Gcodetic are, as usual, very interesting. The Burma-Manipur boundary was surveyed by Major Badglef, the dewareation of which was undertaken ly the Political Agent and Boundary Commissioncr, Colonel Johnstone. Major Badgley took advantage of his return journey to complete as much as possible of the survey of the Manipur territory. No actual survey was executed in Afghanistan, but a great deal of progress has been made with the final mapping of the survers which were made during the late war. The Native Surveyor, Ahmed Ali Khan, deserres credit for the work he has performed in Dardistan and on the Kishanganga watershed; and the accounts of the Trans-Himalayan explorations are very interesting, and reffect groat credit on the several officers who undertook them.
13. The Government of India notices with plensure that the tidal observations, in addition to their practical value for the requirements of mavigation, are now furnishing information which is found to be of much scientific value. These obserrations have recently thrown light on the question of the degree of the rigidity of the carth, and the following extract from paragraph 227 of the Report slows the estecm in which the Indian tidal observations are held by the scientific world:-
"At the recent menting of the British Associntion frir the alvanefment of Science at Southampton, Mr. G. H. Darwin brought forward a ' numerical estimate of the rigidity of the earth,' which gives evidenco of a tidal yielding of the earth's mass, and further indicaten
that the effective rigidity of the whole earth is about equal to that of steel. But it is only recently that there has been a sufficient accumulation of tillal observations, properly reduced by harmonic analysis, to test Sir William 'Thomson's throry (that the universal existence of nceanic tides of considerable height is a proof that the earth, as a whole, p isseises a high degree of rigidity, and that the previously received geological hypothesis of a lluid interior is untenable) ; and Mr. Durwin points out that the great alvance; in knowledge that have now been made are princepally due to the adoption of systematie tidal observations at a great number of stations by the Indian Government,"
14. With regard to the spirit levelling operations, the revision of the Western Ghat section of the line of levels from Madras to Bombay was undertaken with a view to ascertaining whether any accidental error had been made in levelling up the steep ascent of the Ghats, that would account for the discrepancy of 3 feet which had been met with at Madras on comparing the value of the mean sea determined from the local tidal observations. with the value given of the spirit levelling from Bombay. The revision, however, gave practically identical results with the first operations.
15. The second part of the Report deals with the operations of the several Head-quarters Offices of the Department. The two Offices of the Surveyor General and the Deputy Surveyor General (Revenue Survey Office) at Calcutta are now accommodated in the new building recently construeted, which has heen well designed and admirably built. It has also been found to be commodious and airy. The Government of India notices with satisfaction the progress that has been made towards completing a series of outline maps of India on seales of 1 inch to 64 miles, 80 miles and 96 miles. These maps are always in great demand to illustrate official reports. A new map of Bengal, Behar and Orissa, with hills, on the scale of 1 inch $=16$ miles was printed; and at the request of the Quarter Master General in India, a map of Lower Egypt was drawn and published for the use of the troops proceeding to Egypt. Maps of the Suez Canal, Cairo and Alexandria were also printel. All these were in great demand, and large numbers were bought by the public. The number of cadastral maps published during the year was $5: 000$. The experiments with the heliogravure process, which Major Waterhouse conducted in the Photographic Branch, seem to have been eminently successful. A full account of tho process, which is practically a cheap sulstitute for copper engravins, is given at page 99 of the Report, and the print which appears as a frontispiece is a good example of the results attained.
16. The cost of cadastral survers has been reduced even lomer than what it was last year. In the North-Western Provinces it was Rs. 138-13-3 per square mile (Rs. $0-3-6$ per acre) as compared with Rs. 159-1-11 per square mile (Re. 0-4-0 per acre) in 1880-81. In British Burma, too, the general rate for the year was lower than that of last year, viz., Rs. 232-1.9 per square mile (Re. 0-5-0 per acre) agninst Rs. 250-8-7 per square mile (Re. 0-6-3 per acre). The topographical surveys worked at rates similar to those of last year. These results are recy satisfactory, and tend to confirm the opinion of the Department that its field survey work will compare favourably in cost, as it unquestionally does in accuracy, with the surveys exccuted by patwaris and other unprofessional agencies. It now rests with the Surrey Department to maintain, and, if possible, improve, the very creditable standard of economy attained in cadastral surveys during the year under report.
17. The ability with which General Walker administered the Department during 1981-82 is again acknowledged by the Government of India.

Order.-Ordered, that copies of the Resolution be forwarded to the

Marlras.	Punjah.
Bombay.	Cen!ril Provinres.
Bengal.	Brilish Bnrwa.
North. Wratern Crovinces	Assnin.
mud Oudh.	Coorg.

1883.

government of india.

REVENUE AND AGRICULTURAL

 DEPARTMENT.
SURVEYS.

RESOLUTION.

Circular No. 40S.

Dated Simla, the 1sl June 1883.

Sudject.
Revierss the General Report on the operations of the Survey of India during the jear 1881-82.

[^0]: - Volume I is devoted to the Dnac-lines, and Volame V to the l'eaduthon Operations. soction are given in Volumes * II, III and Great Trigonometrical Survey, published in 187 Account of the Operations of the

[^1]: - Colonel Branfil reports of Licutenant the Hon'ble M. G. Tulbot, R. E., who was nttached to his party with a view to being instructed in the geodetic operations of this Survey, that he took an equal share with lim in tho principal trinugulntion nod nstronomical observations, and has shown himself to be "nn excellent observer, with very been pye-sight nad delicncy of manipulation :" he was also of much nsaistance nt the base-line. Mr. D. Atkinson executed the epirit-levels, connecting the bisc-line with the sen, conjointly with Mr. Senior. Mr. Pocock built threo of the principal stations, one being 1,500 and another 2,000 fect above the level of the sea, nad cleared the hill-tops of forest. Mr. Potter built and cleared three stations, one, Kisseraing, on n Inrge island surrounded by mangrove awamps, to rench which it was necessary to open out a rond more than five miles in length for the passage of tho large theodolite. Mr. Torrens was employed on similar operations, and on gecondary triangulation in Mergui. Eanch officer abared in the meanurement of the base line. Subsequently Messes. Pocock and Potter took most of the star obser vations for the Intitude determinntione nt Moulmein. Inchuding Moung Shony Gyoke, the Durmese suobsurveyor, all are reported by either Colonel Bradfill or Mujor Mogera to bave worked remarkably well and given entire antisfaclion.

[^2]: - Mnjor Strnhan reports that "Mr. Doran'a work for the aeason was entirely to my atiafnction." Megars. Templeton, Kitchen, nid Thte are commended for their accaracy. Or the aub-surveyors, Abdul Gufar ia more eapecially noticed for his care and accuracy.
 \& Major Carter reports that Mesers. Wyatt, Grnham, and George, and Sub-Surveyors Sheik Omar, Mr. Bozario, and Hyder Ali, "are particularly deserving of mentivn" for their good work,

[^3]: Published under the direction of Lieut. General J.T. Walker, C.B., R.E., F.R.S., Surveyor General of India,

[^4]: - Major Wilmer, "fter eloge personal inspection of the work of his nesistants, coranendy Messra. Hamer, Whinright, Kitchen, and Copping for the nccurncy of thoir work, that of Messra. Wainriglit and Kitehon being especially neat.
 Bub. Survesor I'rcu lloj is nlso specially mentionod for good work.

[^5]: - Lieutenant-Colonel Woodthorpe spenks in the highest terms of the work of Mr. Ores, not only in Manipur. where he assisted Mrijor Barley, but ntso in the many difficult and dangerous unilertakings in which he has heen assaciated with Colonel Woollhorpe. Mr. Ohenaell and sub-burveyor Shail Nusirudin are also mentioned as baving sperially diasingenished themselves.
 \dagger Mr. Mcdill reports fuvouralily of Mesars. Wilaon and Fleming, and of his sub-survegors, specially commending the checrful and zealous maner in which they have cooducted themselves.

[^6]: - Major Thuilier acknowledges the good sorvices of lieutennt Longe, R E., nod highly commende his energy nud persevernmec. He ulso reparts very lavourably on the work of all hie Europenn assistants, and of Sub-Surveyors Innki Dass Raghavyengar, Lachuan Dinji, and Baluji.

[^7]: * Major Holdich gpeaks of the warts of Mr. McNair as loeing highly creditable to bitn. Subasarvegor Ebuf Eharif's nork is deseribed as "very gool," and that of syad Ullub as "accurnte."

[^8]:

[^9]: - Cononel Haig reporta :-"To Cnptnin Holdiny much orcidit is duc for the energetic way in which be inetracted the hands, both European and Native, in the use of the water-level and pushed on the work in the Dangs." He also reporta vely favourahly of the work of ench of the other inembera of the party.

 4 Licutenant. Colonel Pullan reports that. thank to the exanple of determination and pluck act by Mr. Hill, the Native survejors strove well against the onhealtly clinute, and worked on in epite of occasional attacks of fever.

[^10]: - Mr, Johnson reports very furnurably on the services of Mr. G. H. Conke, Mr. Todil, Mr. Ewing, Mr. Wilann, and Mr. Syens, and namis the finlowing members of the nalive establishment ns lanving done well and given patialiaction, viz. K.dar Nuth, Hbugobutty Charn Cluckerbutry, Didnr Bux, Sarfraz Khun, Nejabut Jlozuin, Mohoned Zabaria, Alladad Klian, Brahirudin, Doithram, nad Abdal Karim.

[^11]: *Mnjar Andrew reports that Lis nssistnuts, Messes. Singlie, Hickie, Swiney, and Knight, have afforded hin entire athefaction.

[^12]: Major R. Benvan, S.C., Offeinting Deputy Superintendent, 4 tl grade, in charge.
 Mr. J. T. U. Coxell, Δ sgistant Surveyor, 1at grnde. H. Corkery

 Sub-Surveyor Aldul Rasul. Ditto Barkat Ali,
 and one other.

[^13]: - Mnjor Cowno epeaks highly of hia Europenn nsaistanta, Messrs. Pumberton, Krmal, and Smart; and mhile commending all the members of the Native catablishment, makes particular mention of sub-surveyor Dibwar Khan.

[^14]: "Colonel Macdomald reports as follows on his nesistants :-
 "Mr. W.S. Buttress is a very steady, able, and painstaking nesistant."
 "Mr. Gibson shu escelient hill surveyor and a goud draftsman; he did good service both in field nod oflice."
 "Mr. 'Todd, ns usunl, worked very hard. Шe is a very good plane-tabler, und nevor spares himself."
 "Mr. Kelly is a stendy uesistant."
 The following men of tho nalive establishment aro specially brought to notice, viz. sub-surveyors Eed Mabomed, Rantonoo Chuekerbutty, and Goordit Singl, aud English writor Elali Bux.

[^15]: - Major IIill reporte ne follows on the aesistants of his party :-

 He speaks highly of the eerrices of Captain G. W. Martin during the short time ho was attached to the parts.
 "On Mr Lawson," he enys, "an unnsual respongibility wha imposed during the lutter part of the fipld senson and early part of the recess owing to the illness and death of Major Lees Smith, which be well sustaned as oficer in charge of the porty."

 Mr. Newland is spoken of as "a cheorfinl, zealous and hard-working assistant, of high character and devoted to bis work.'
 $\mathbf{M r}$. Kelly is said to hore worked well and steadily. but ho bad not paid sufficient attention to detnils in his topography.

 Mr Jickineon is anid to be a very good hill-gurveror and draftsman, of whom Major Hill further anya he has avery reason to bo satisfed.

 Sub-surveyors Fyzulah Ehan and Nathn Lall are named as being deserring of apecial commendation.

[^16]: * Colonel Anderson reports very favourably of Messra. Little, shan, Hill, and O. D. Smart.

[^17]: - Major Barron reporta that Mesara. Wilson, Hanlyy, and Price, reapectively in charge of three aections of hia eatablishment, have conducted their duties to his entire satiefaction. He enys:-"They are zenlous, burdivorking surveyors, and uin at turning out a high atmodat of work."

 The nesistant surveyors, Messrs. Madras, Drew, and Derkeley, are said to have performed their datich caliefactorily.

 Tho following members of the native eatabliwhent are roported to bave done well nod to deserve commendatinn, viz. Lbu Hagan, Jamaloodeen, Mahmood Bux. Ennyetoollnh' Bhnwmi Persharl, Muer Usjudnllec, Lalmohnna Gungepadhyn, Sew Nuraien, Kanny Lall, and Zakirally. The rest of the members of the proressional and cadastral catnbligh. ments have worbed well and beartily.

[^18]: - The following are extrucls from Major McCullagh's report on his hssistants :-
 "Mr. Jnckson. Assistaut Superintendent, has a thorough kuovledge of the worls in all its detaile, and he has cheerfully and ably nasisted me in every way,"
 "Mesars. Grant nud King, in chnrge of cadnstral enmpg, lanve shown inuch tact and judg ment in tho diacharge of their onerons dutios 1 ammuch indelted to hoth for *" "the energy and endurance they Lire displayed."

 Mr. Duwinan is spoken of as na experiunced, careful, and painstaking officer, who carried out the duties edtruated to bim with much ability.
 "Mr. Mcllathon, in charge of the revision eamp, had very arduous dutics to perform, into the execution of which he brought aound judgnent and oxcellent temper to berr."
 "Mcesrs. Parker and Jurphy gave great antisfuction ; theg are both bard-working and painstaking nesistante."

[^19]: " It is greatly to be regretted that a few Burmans have not been found able to become qualified to undertake an inspector's duties, for suoh men would be invaluable in teaching other Burmans.
 If two or three suitable Burmans can be found, endeavours will be made to train them for the post of inspector, and, by the offer of a liberal salary, to restrain them from leaving the department. At present, the hope of getting other employment is the only inducement for a Burmnn to become proficient in the various duties of a cadastral surveyor. To train himself for the duties of an inspector or general surveyor, so that he can impart his knowledge to bis fellow countrymen nud become of real assistance to the European officers of a party, is not within the scope of bis ambition."

[^20]: - Major Wilkins lane reported of nll his nesistants:-
 "Mr. Littlewond (be eays) is n Fist-rate assistant, who has hie work always up to date, with a perfect temper and conl judgonent that never derert him.',

 Mesara, O' Donel. Smart, Dunne, nod Ford, who had ebarge of apctions of the establishinent, are highly reportud on, nind Mr. Penrase, as an asgistant to the olhers, is snid to have worked very entisfactorily.

 The following anb mirveyora and nthere are mentioned favourably by name : -
 Gujadhar ; and computer Manoliar Lall.

[^21]: * Mr. Thalbot reports very farourably of his assistants, Messrs. $\mathrm{V}_{\text {gall, }}$ Jarbo, Scott, and Smart. He also snye:-
 "The eare and trouhle bestowed by Mr. Scott in tenching tho Burmans deservo much praise.
 "Mr. Jarlo nlso descrros groat praiso for the stendy way he conducted the forest reserve survey in the Pegu Yoma; though gick himeelf, ho still worbed on and act n good example to hie men"

 Measpe. Swiney and Martin aro also aaid to lanvo donc well. The following monbers of tho native ostablishment aro anid to descred mention as having worked well, viz.-Venketgawisy, Nundhil Chatterjee, Soomair Singh, Shoohi Bhurhan Uhosal, Ibsan Chunder Gbosal, and Mr. La Rive.

[^22]: - Mr, Cowley, from begimning to ond of the operations, has carried on the work entruated to him moat astiafactorily.

[^23]: - From a comparison made between the olservationa and the pridictions for 1882, it nppears that the number of shirt-period terms combined by the Indin ()ffice tide-predicting in:whe is not nearly sufficiont to reproduce the ride-curves for this place, nor Indian rivernin ports generally, more especinlly for the phases of lom-water. As it will rake tine to evalunte by the muthod of harmonic annlyais the proper mumber of ternag reguisite to reproduce the tide-curves with the desired uccurary, recourse has been had to the following methol of trentment, which, judging
 for Kidderpore, promises to yield predictions diflering from the facte within narraw limise.

 The observed times nud beights of high and low-wnter were anbulated in the ordinary mamer to proluce the amimenatrund carvea for time and height of high and low-water depending on the time of the moons transit in apparent time, relerred, however, to hle transit at Greenwich nbout 40 unterior to the lime of observation. The predietions were then obtaineld directly from the quantities thus fomon, and were corrected for lanar and solar pornllux and declination by the tolhererontained in sir Jolin Lubbock's elpinentary trentise on thi tides, which are ued in the Nantieal Almanne nind Admirnty ulines for their tidul predictoms. For the enrections to the heights of high and tow-whter the proportions betwen the Lamion vilues of spring and nenp tides compared with therse of binmond Harbour bave becnused. This metbod of treatomentukes thus far into acenant armidiurmal tides buly. In order in Harbet the predictions fir the dimenal tides, the fullowing plan bins been ndopted. The predictions for time of high and low-water for Dublat have heen computed similuriy to the mbinve (the semimenatrual curver lanving been ubtuind from the actmal predictions for 1883), mud the difirences twken betwern the times thas ohtained und the times
 at these differences has been uegh for eawh bigh nod low-water, and applied to the Dinmond Hartour predictions of purely semidiurmal tidies. In aldition to theace conrections, weother (which may be termed a sengomi correction) hum
 durable extent.

 predictiog unchine. The vilus of the diurial and long period tides used were those based on the evaluated resulta given in the tide table for 1882

[^24]: antiaficto ily.
 "Mr. Connor had charge of the Compucing branch, and to his zeal and hard work the very successful outturn of computntions is grenily duc."

[^25]: - Majer Rogers reporte : -" Mr. Mendell carried his levels through exceptionally trying and difficult country and ehowal yerat energy and intelligence in the prosecution of bis work.
 \because Naraing Daras warked ercellontly.
 " The cumputers iu general gare satiafnction."

[^26]: Mr. Bond was employed during the seuson uncler report in building the transit pillars in adrance at Fyzabad, Hazaribagh, and Julpaigori, and connecting their sites with the main triangulation, and in revising the connecting triangulation at Agra, which did not contain eufliciont chechs within itself to be quite satisfactory. The revision showed, however, that the crror in the prerious determination was insignificant. Mr. Bond's work and conduct wore perfectly atiafnctory in all points during the seasen.

 Mr. Kechan joined tho party towarils the beginning of the recess in place of Mr. Bond, who was trangferred to the hend quarters ollico in Jelirn. He was cmployed in reading of the chrodographic ehcots and in rarious computations, nad discharged theso duties satisfactorily.

 Mr. Atkinson mas employed under Lieutenant-Colonel Campleell, in No. I Astronomical Party, during tho recese on computation of the previous achanis work, in which he gave antisfaction.

[^27]: - In the Correspondence Branch Mr. Haboman has performed his maltifariong dutier ne Repistrar and Arcountant
 have ulso given entire satisfation.
 \dagger Mr. J. F. Baness, Chief Jraflaman in the Drawing Branch, mas tmanferred in March 1892 to the offiec
 the sila Augut. Br, Jumes reports that both Mesers. Chamarett and patergon have conducted their duties ably.

 Mr. W. Green and Mabmo Molice Chundirstinaw haro given satisfartion.
 \pm Messra. Wilson and Δ dams, and Baboo Purna Chundra Sen, contiane to render good aid in the Examining Irmith.

[^28]: - In tho Engraving Branch tho Superintendent, Mr. C. W. Coard, and his Europenn assistant, huve workod obly and mell, and the nolive engrarerg under their tuition are making good progress.
 \dagger Mr. II. A. Uibsou, Map Curator, is a must useful assietant, and performs his dutice ably.

[^29]: * Mu. F, W. Felly, Surveyor, lat grade, us hemel of the drawing section of tho oftice, has continued to render exerellent servine.

 Mr. W. Sinclair, Surreyor, 2nd grade, in charge of the calastral map exnmination, continuell to give entire enfiefinction, "p to tho time of lie going on furlough. Mr , J. H. O'Donel, Surreyor 4 th greble, who took over
 Iraitsmen, hure done good and npproved work. The nfice has to regret the loss of Mr. W. J. Lane, Assistant Surreryor and Draftsmani a useful and intelliyent oflicer, who died on tho Ilth October 1882.

 Mr. A. E. Byrn, Mr. a C Cuminghum, Mr. Gopal Chumeter Lalia, Dinboos IInrri Hur Sen, Killy Pudo Bancrije, Doorgu Xamin Gihnse, limm Kisto Chunder, Dama Churn Chuckerbulty, Tineouri Sen, Slerikhas Mcher ali, Abdul Δ zeez, and ltolim Bux, logether will the rest of the eetoblishment, hare nil given satialiuction.

[^30]: - Mr. H. L. Lepage, Hend Assistant, has performed his dulies entisfactorily with the nid of Mr. Watgon, who bus been tenporarily transferred from the Photogrnphic Office to oupervise the chromo-libingrnphic printing, vice Mr. Niven, nbseut on leave. Mr. D'Pyvah, type printer, and the antive draftemen and clerka, have worked well.

[^31]: * Major Watorhouso reports farourably of his Europenn nasistants, Messrs. J. and B. Mackenzie, Harrold Marbhall, George, Lagnier, Le Franc, und Dempater, who all continue to work with their usaal zeal and steadinese,
 and of the head clerk, Baboo Kunnga Lal sen.

[^32]: - Major lididoll reporta that he is well satisficd with the work of Mr. T. Bolton, the Instrument-maker, and with that of Mr. T. Narshall, the Assistant Mathematical Instrument-maker, who is a very useful nequisition to the workshop. The atore.koeper aud office clerks have worked assiduously and as successfully as can be expected

[^33]: * Mr. Henneasey acknowledges the valualle and efficient nid he has received from Mr. Cole in direction as well as in exceution, more particularly in regard to the completion of Volume vir.

 Mr. Wood is commended for the willingness and ability with which be bas discharged a great variety of duties.
 The work of Mr. Yeychers, Dabous Guuga Pershad and Cally Mulann Gbose, in the Computing Brauch, is reported on very favourably.

 Messrs. Kcelan, Atkinson, Clarke, Ollenbach, Hughes, and Dyapa, are also commended.

[^34]: - In addition to tho nhove, 12 m miles of leqeling wre exented by the Hanthamaddy Revenue Branoh Party in British Barma,

[^35]: A. CHAMARETT, Surveyor, Examining Branch. $\}$

 ## JOHN O. N. JAMES,
 Assistant Surwyor-General,

 In charge Draving and Geographical Compiling Branch.[^36]: Deluty Surveyok-Geneanl's Office, $\{$ F. W. Kelly, J. E. Sandeman, Major,
 Calcutta, 1st Octuber 1882. $\}$
 Surveyor.
 Di. Supdt. at Headquarters.

[^37]: - The letter-press appertaining to these charts is not yet complete.

